ISSN : 2488-8648


International Journal of Basic Science and Technology

A publication of the Faculty of Science, Federal University Otuoke, Bayelsa State

Home About IJBST For Authors Issues Useful Downloads Contact


FAQ OJBST

Questions are asked and these questions need answers. This is the reason why this page is created to enable us share few worries!

×
Archive | ISSUE: , Volume: Jul-Sep-2025

Computational Insights into Corrosion Inhibition Efficiency of 5 Bromothiophene 2 Carbaldehyde: A DFT and Monte Carlo Simulation Approach


Author:Badeji et al.,2025

published date:2025-Aug-14

FULL TEXT in - | page 229 - 239

Abstract

This study investigates the corrosion inhibition efficiency of 5-Bromothiophene-2-Carbaldehyde (5-BTCA) using a combined Density Functional Theory (DFT) and Monte Carlo (MC) simulation approach. Quantum chemical calculations performed with Gaussian 16 evaluated the structural, electronic, and vibrational properties of 5-BTCA in the gas phase and in DMSO, ethanol, and water. Results reveal minimal solvent impact on molecular geometry but significant influence on vibrational frequencies, especially in polar solvents. The DFT calculations revealed 5-BTCA as a strong electron donor with a lower HOMO-LUMO energy gap (4.551 eV in H2O and 4.567 eV in ethanol), which signifies greater reactivity and absorptivity in the aqueous environment. The chemical potential (μ = -4.633 eV in H2O) and electrophilicity index (ω = 4.714 in H2O) indicated the molecule to be involved in strong interactions with metal surfaces. Natural Bond Orbital (NBO) analysis showed stable donor-acceptor interactions and solvent effects on π-bond delocalization. MC simulations, conducted on the Fe(110) surface in an acidic environment, demonstrate strong spontaneous adsorption of both protonated and unprotonated 5-BTCA, with the protonated form exhibiting slightly higher adsorption energy, indicating superior inhibition stability.

Keywords: Monte Carlo simulation; Corrosion inhibition; Electrophilicity index DFT ,,,,

References

Akinyele, O. F., Adekunle, A. S., Olayanju, D. S., Oyeneyin, O. E., Durodola, S. S., Ojo, N. D., Akinmuyisitan, A. A., Ajayeoba, T. A. and Olasunkanmi, L. O. (2022). "Synthesis and corrosion inhibition studies of (E)-3-(2-(4‑chloro-2-nitrophenyl) diazenyl)-1-nitrosonaphthalen-2-ol on Mild Steel dissolution in 0.5 M HCl solution-experimental, DFT and Monte Carlo simulations." Journal of Molecular Structure 1268: 133738. https://doi.org/10.1016/j.molstruc.2022.133738

.Akrom, M. (2024). "Green corrosion inhibitors for iron alloys: a comprehensive review of integrating data-driven forecasting, density functional theory simulations, and experimental investigation." Journal of Multiscale Materials Informatics 1(1): 22-37. https://doi.org/10.62411/jimat.v1i1.10495.

Al-Amiery, A. A., Isahak, W. N. R. W. and Al-Azzawi, W. K. (2023). "Corrosion inhibitors: natural and synthetic organic inhibitors." Lubricants 11(4): 174. https://doi.org/10.3390/lubricants11040174.

Al-Amiery, A. A., Nik, W. M. N. W., Mohd, M. S., Ghazali, E. Y., Isahak, W., Khalid, W., Al-Azzawi, M. F. R. Z., Daoudi, W. and Dhande, I. O. V. A. Y. (2024). "Recent innovations in organic inhibitors for mild steel in corrosive solutions: A mini Review." Journal of Sustainability Science and Management 19(5): 146-173. https://doi.org/10.46754/jssm.2024.05.009.

Aliofkhazraei, M. (2018). "Corrosion inhibitors, principles and recent applications." https://doi.org/10.5772/intechopen.72943.

Arrousse, N., Fernine, Y., Al-Zaqri, N., Boshaala, A., Ech-Chihbi, E., Salim, R., El Hajjaji, F., Alami, A., Touhami, M. E. and Taleb, M. (2022). "Thiophene derivatives as corrosion inhibitors for 2024-T3 aluminum alloy in hydrochloric acid medium." RSC advances 12(17): 10321-10335. https://doi.org/10.1039/D2RA00185C.

Badeji, A. A., Omoniyi, M. T., Ogunbayo, T. B., Oladipo, S. D. and Akinbulu, I. A. (2024). "Quantum chemical investigation of the degradation of acid orange 7 by different oxidants." Discover Chemistry 1(1): 55. https://doi.org/10.1007/s44371-024-00059-x.Becke, A. D. (1993). "A new mixing of Hartree-Fock and local density-functional theories." Journal of chemical Physics 98(2): 1372-1377. https://doi.org/10.1063/1.464304.

Dunning Jr, T. H. (1989). "Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen." The Journal of chemical physics 90(2): 1007-1023. https://doi.org/10.1063/1.456153.

Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Petersson, G., and Nakatsuji, H. (2016). "Gaussian 16 rev. C. 01, wallingford, ct. Wallingford, CT.".

Fukui, K. (1981). "The path of chemical reactions-the IRC approach." Accounts of chemical research 14(12): 363-368. https://doi.org/10.1021/ar00072a001.

Fukui, K., Yonezawa, T. and Shingu, H. (1952). "A molecular orbital theory of reactivity in aromatic hydrocarbons." The Journal of Chemical Physics 20(4): 722-725. https://doi.org/10.1063/1.1700523.

Gaber, G. A., Soliman, M. M., Nasr, Z. A. and Hyba, A. M. (2024). "Comprehensive investigation of sustainable corrosion inhibitors on Cu–Zn alloy in simulated cooling water: Electrochemical explorations, SEM/EDX analysis, and DFT/molecular simulations utilizing expired Bepotastine-B as a green inhibitor." Sustainable Chemistry and Pharmacy 37: 101340. https://doi.org/10.1016/j.scp.2023.101340.

Gadre, S. R., Suresh, C. H. and Mohan, N. (2021). "Electrostatic potential topology for probing molecular structure, bonding and reactivity." Molecules 26(11): 3289. https://doi.org/10.3390/molecules26113289.

Gece, G. (2008). "The use of quantum chemical methods in corrosion inhibitor studies." Corrosion science 50(11): 2981-2992. 10.1016/j.corsci.2008.08.043.

Guo, L., Safi, Z. S., Kaya, S., Shi, W., Tüzün, B., Altunay, N. and Kaya, C. (2018). "Anticorrosive effects of some thiophene derivatives against the corrosion of iron: a computational study." Frontiers in chemistry 6: 155. https://doi.org/10.3389/fchem.2018.00155.

Hansen, K. (2018). Molecular Dynamics and Monte Carlo Simulations. Statistical Physics of Nanoparticles in the Gas Phase, Springer: 253-285.

Hasanzadeh, N. (2024). "Theoretical Study of the Solvent Effect on Elimination Reactions: Hybrid-DFT Study and NBO Analysis." Journal of Structural Chemistry 65(5): 929-945. https://doi.org/10.1134/S002247662405007X.

Huang, Y., Rong, C., Zhang, R. and Liu, S. (2017). "Evaluating frontier orbital energy and HOMO/LUMO gap with descriptors from density functional reactivity theory." Journal of molecular modeling 23(1): 3. https://doi.org/10.1007/s00894-016-3175-x.

Kumar, V. S., Satya Narayana, T. V. V., Vijayakumar, P., Babu, V. R., Pavani, G., Swami, K. N. S. a. and Dr. Somarouthu, V. G. V. A. P. (2024). "Advances in Computational Quantum Chemistry: Methods, Applications, and Future Directions." Journal of Systems Engineering and Electronic 34(5): 204-212.

Liu, L., Miao, L., Li, L., Li, F., Lu, Y., Shang, Z. and Chen, J. (2018). "Molecular electrostatic potential: a new tool to predict the lithiation process of organic battery materials." The Journal of Physical Chemistry Letters 9(13): 3573-3579. https://doi.org/10.1021/acs.jpclett.8b01123.

Mahmood, E. A., Poor Heravi, M. R., Khanmohammadi, A., Mohammadi-Aghdam, S., Ebadi, A. G. and Habibzadeh, S. (2022). "DFT calculations, structural analysis, solvent effects, and non-covalent interaction study on the para-aminosalicylic acid complex as a tuberculosis drug: AIM, NBO, and NMR analyses." Journal of Molecular Modeling 28(10): 297. https://doi.org/10.1007/s00894-022-05279-5.

Marenich, A. V., Cramer, C. J. and Truhlar, D. G. (2009). "Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions." The Journal of Physical Chemistry B 113(18): 6378-6396. https://doi.org/10.1021/jp810292n.

Mouats, N., Djellali, S., Ferkous, H., Sedik, A., Delimi, A., Boublia, A., Rachedi, K. O., Berredjem, M., Cukurovali, A. and Alam, M. (2024). "Comprehensive investigation of the adsorption, corrosion inhibitory properties, and quantum calculations for 2-(2, 4, 5-Trimethoxybenzylidene) hydrazine carbothioamide in mitigating corrosion of XC38 carbon steel under HCl environment." ACS omega 9(26): 27945-27962. https://doi.org/10.1021/acsomega.3c10240.

Neyts, E. C. and Bogaerts, A. (2012). Combining molecular dynamics with Monte Carlo simulations: implementations and applications. Theoretical chemistry in Belgium: a topical collection from theoretical chemistry accounts, Springer: 277-288.

Nyquist, R. A. (1986). "Factors affecting infrared group frequencies: Carbonyl stretching absorption bands." Applied spectroscopy 40(3): 336-339.

Oladipo, S. D., Luckay, R. C., Badeji, A. A., Zamisa, S. Z., Olalekan, S. O. and Oladoye, P. O. (2025). "Structural studies, DFT computational analysis and inhibitory potential of (E)-N'-(2-bromophenyl)-N-(2, 6-diisopropylphenyl) formamidine against CDK1 and CDK2." Journal of Molecular Structure 1320: 139734. https://doi.org/10.1016/j.molstruc.2024.139734.

Oladipo, S. D., Zamisa, S. J., Badeji, A. A., Ejalonibu, M. A., Adeleke, A. A., Lawal, I. A., Henni, A. and Lawal, M. M. (2023). "Ni2+ and Cu2+ complexes of N-(2, 6-dichlorophenyl)-N-mesityl formamidine dithiocarbamate structural and functional properties as CYP3A4 potential substrates." Scientific Reports 13(1): 13414. https://doi.org/10.1038/s41598-023-39502-x.

Oyeneyin, O. E., Ibrahim, A., Ipinloju, N., Ademoyegun, A. J. and Ojo, N. D. (2024). "Insight into the corrosion inhibiting potential and anticancer activity of 1-(4-methoxyphenyl)-5-methyl-N’-(2-oxoindolin-3-ylidene)-1H-1, 2, 3-triazole-4-carbohydrazide via computational approaches." Journal of Biomolecular Structure and Dynamics 42(20): 11149-11166. https://doi.org/10.1080/07391102.2023.2260491.

Oyeneyin, O. E., Ojo, N. D., Ipinloju, N., Agbaffa, E. B. and Emmanuel, A. V. (2022). "Investigation of the corrosion inhibition potentials of some 2-(4-(substituted) arylidene)-1H-indene-1, 3-dione derivatives: density functional theory and molecular dynamics simulation." Beni-Suef University Journal of Basic and Applied Sciences 11(1): 132. https://doi.org/10.1186/s43088-022-00313-0.

Popoola, L., Grema, A., Latinwo, G., Gutti, B. and Balogun, A. (2013). "Corrosion problems during oil and gas production and its mitigation." International Journal of Industrial Chemistry 4(1): 35. https://doi.org/10.1186/2228-5547-4-35.

Prasad, A. R., Kunyankandy, A. and Joseph, A. (2020). "Corrosion inhibition in oil and gas industry: Economic considerations." Corrosion inhibitors in the oil and gas industry: 135-150. https://doi.org/10.1002/9783527822140.ch5.

Resen, A. M., Jasim, A. N., Qasim, H. S., Hanoon, M. M., Al‐Kaabi, M. H., Al‐Amiery, A. A. and Al‐Azzawi, W. K. (2023). "A combined experimental and theoretical study of a novel corrosion inhibitor derived from thiophen." Carbon Neutralization 2(6): 661-677. https://doi.org/10.1002/cnl2.92.

Roscher, J., Liu, D., Xie, X. and Holze, R. (2024). "Comparative Assessment of Aromatic Iron Corrosion Inhibitors with Electrochemical Methods." Corrosion and Materials Degradation 5(4): 593-600. https://doi.org/10.3390/cmd5040024.

Šebek, J. í., Knaanie, R., Albee, B., Potma, E. O. and Gerber, R. B. (2013). "Spectroscopy of the C–H stretching vibrational band in selected organic molecules." The Journal of Physical Chemistry A 117(32): 7442-7452. https://doi.org/10.1021/jp4014674.

Shaker, L., Al-Amiery, A., Al-Hamid, M. and Al-Azzawi, W. (2024). "Understanding the mechanism of organic corrosion inhibitors through density functional theory." Koroze a Ochrana Materiálu 68(1): 9-21. https://doi.org/10.2478/kom-2024-0002.

Shankar, U., Gogoi, R., Sethi, S. K. and Verma, A. (2022). Introduction to materials studio software for the atomistic-scale simulations. Forcefields for atomistic-scale simulations: materials and applications, Springer: 299-313.

Sheryazov, S., Sarkulova, Z. S., Balgynova, A., Shukirova, S. and Zh, T. A. (2024). "METHODS OF CORROSION PROTECTION OF EQUIPMENT AND PIPELINES IN THE OIL AND GAS INDUSTRY." Научный журнал" Вестник Актюбинского регионального университета имени К. Жубанова" 76(2): 35-42. https://doi.org/10.70239/arsu.2024.t76.n2.05.

Singh, A., Ansari, K. R., Quraishi, M. A. and Lin, Y. (2019). Investigation of corrosion inhibitors adsorption on metals using density functional theory and molecular dynamics simulation. Corrosion Inhibitors, IntechOpen.

Suresh, C. H., Remya, G. S. and Anjalikrishna, P. K. (2022). "Molecular electrostatic potential analysis: A powerful tool to interpret and predict chemical reactivity." Wiley Interdisciplinary Reviews: Computational Molecular Science 12(5): e1601. https://doi.org/10.1002/wcms.1601.

Ueda, W. (2022). Crystalline Metal Oxide Catalysts, Springer.

Verma, C., Ebenso, E. E. and Quraishi, M. (2017). "Ionic liquids as green and sustainable corrosion inhibitors for metals and alloys: an overview." Journal of Molecular Liquids 233: 403-414. 10.1016/j.molliq.2017.02.111.

Wilson, A. K., Woon, D. E., Peterson, K. A. and Dunning Jr, T. H. (1999). "Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton." The Journal of chemical physics 110(16): 7667-7676. https://doi.org/10.1063/1.478678.

Zhan, C.-G., Nichols, J. A. and Dixon, D. A. (2003). "Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies." The Journal of Physical Chemistry A 107(20): 4184-4195. https://doi.org/10.1021/jp0225774.

Zhao, Y., Schultz, N. E. and Truhlar, D. G. (2005). "Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions." The Journal of chemical physics 123(16). https://doi.org/10.1063/1.2126975.

 

 

 

 

FULL TEXT in - | page 229 - 239

Issue Archive

Volume 13 2027

Volume 12 2026

Volume 11 2025

Issue 3-Jul-Sep
Issue 2-Apr-Jun
Issue 1-Jan-Mar

Volume 10 2024

Issue 4-Oct-Dec
Issue 3-Jul-Sep
Issue 2-Apr-Jun
Issue 1-Jan-Mar

Volume 9 2023

Issue 4-Oct-Dec
Issue 3-Jul-Sep
Issue 2-Apr-Jun
Issue 1-Jan-Mar

Volume 8 2022

Issue 4-Oct-Dec
Issue 3-Jul-Sep
Issue 2-Apr-Jun
Issue 1-Jan-Mar

Volume 7 2021

Issue 4-Oct-Dec
Issue 2-Apr-Jun
Issue 1-Jan-Mar

Volume 6 2020

Issue 4-Oct-Dec
Issue 3-Jul-Sep

Volume 5 2019

Issue 4-Oct-Dec
Issue 2-Apr-Jun
Issue 1-Jan-Mar

Volume 4 2018

Issue 4-Oct-Dec
Issue 3-Jul-Sep
Issue 2-Apr-Jun

Volume 3 2017

Issue 4-Oct-Dec
Issue 1-Jan-Mar

Volume 2 2016

Issue 4-Oct-Dec

Volume 1 2015

Issue 4-Oct-Dec


Copyright © International Journal of Basic Science and Technology | Faculty of Science, Federal University Otuoke 2019. All Rights Reserved.
P.M.B. 126, Yenagoa. Bayelsa state Nigeria