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Introduction 
 

Corrosion poses a serious threat in many industrial 

applications, causing the deterioration of metals and 

resulting in significant economic losses worldwide, 

estimated at over $2.5 trillion annually. Environmental 

factors such as moisture, oxygen, and aggressive ions 

like chloride and sulfate accelerate electrochemical 

degradation. This highlights the urgent need for 

effective corrosion mitigation strategies (Popoola et 

al. 2013, Prasad et al. 2020, Sheryazov et al. 2024). 

Organic corrosion inhibitors have gained attention as 

a sustainable, cost-effective, and eco-friendly 

alternative. These inhibitors commonly contain 

heteroatoms (N, O, S) or π-electron-rich structures that 

adsorb onto metal surfaces, forming protective layers 

that prevent corrosive agents from attacking the metal 

(Aliofkhazraei 2018, Al-Amiery et al. 2023, Al-

Amiery et al. 2024, Roscher et al. 2024). 

Computational and surface chemistry methods often 

complement experimental studies to better understand 

corrosion inhibition, focusing on electron density 

distribution, molecular orbital interactions, and charge 

transfer processes that influence inhibitor adsorption 

and efficiencies (Verma et al. 2017, Ueda 2022, 

Akrom 2024, Gaber et al. 2024, Kumar et al. 2024). 

Among organic inhibitors, thiophene derivatives have 

gained significant attention due to their unique 

electronic and structural properties (Guo et al. 2018, 

Arrousse et al. 2022, Resen et al. 2023). One of such 

compound is 5-Bromothiophene-2-Carbaldehyde (5-

BTCA), featuring a thiophene ring substituted with 

bromine and aldehyde groups (Figure 1), making it a 

promising candidate for corrosion inhibition (Arrousse 

et al. 2022). While the bromine atom enhances charge 

transfer due to its high polarizability (Guo et al. 2018, 

Resen et al. 2023), the thiophene ring supports π-

electron interactions with metal surfaces, and the 

electron-withdrawing aldehyde group increases 

electron density on the ring, facilitating chemisorption 

with metal d-orbitals like those of iron and steel 

(Resen et al. 2023). These combined effects enable 5-

BTCA to form dense, stable protective layers that 

significantly reduce corrosion rates under challenging 
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conditions (Guo et al. 2018, Arrousse et al. 2022, 

Resen et al. 2023). 

 
Figure 1. 3D structure of 5-bromothiophene-2-

carbaldehyde (5-BTCA). 
 

To investigate the molecular mechanism underlying 

the efficacy of 5-BTCA, the present study uses a 

combined density functional theory (DFT) and Monte 

Carlo (MC) simulation (Singh et al. 2019) to obtain 

information on the adsorption behaviour and reactivity 

of 5-BTCA and get the prediction of the most 

favourable adsorption configurations and also the 

calculation of adsorption energies of 5-BTCA on 

metal surfaces under varying conditions (Shaker et al. 

2024). 
 

Computational details  

DFT calculations: Quantum chemical investigations 

of 5-BTCA were conducted using DFT via Gaussian 

16 program package (Frisch 2016) to study its 

structural and electronic properties. Geometry 

optimizations were performed in the gas phase and 

solvents (DMSO, water, ethanol) to analyze solvent 

effects, employing the B3LYP hybrid functional 

known for accurately representing electronic 

structures (Becke 1993, Zhao et al. 2005, Gece 2008) 

combined with the correlation-consistent polarized 

valence triple-zeta (cc-pVTZ) basis set for a balance 

of accuracy and computational efficiency (Dunning Jr 

1989, Wilson et al. 1999). The basis set was selected 

as a good compromise between accuracy and the 

computational costs to describe the electronic 

distributions in space during the calculations. Solvent 

influences were modelled with the SMD implicit 

solvation model in conjunction with the self-consistent 

reaction field (SCRF) method (Marenich et al. 2009). 

Vibrational frequency calculations confirmed 

optimized structures as minimal by showing no 

imaginary frequencies (Fukui 1981). Reactivity was 

assessed using Molecular Electrostatic Potential 

(MESP) maps that visualize charge distribution, 

highlighting nucleophilic and electrophilic regions 

(Liu et al. 2018, Suresh et al. 2022, Badeji et al. 2024). 

Frontier Molecular Orbital (FMO) theory analyzed 

HOMO and LUMO energies and their gap (ΔE), 

where a smaller energy gap indicates higher reactivity. 

Key global reactivity descriptors, including hardness 

(η), softness (σ), electronegativity (χ), and 

electrophilicity index (ω), were computed to quantify 

molecular stability and electron-transfer abilities, 

providing insights into how 5-BTCA interacts 

chemically in various environments (Fukui et al. 1952, 

Zhan et al. 2003, Huang et al. 2017, Oladipo et al. 

2025). This comprehensive approach allows for 

elucidation of the molecule’s electronic behaviour 

relevant to its corrosion inhibition potential. 

2.2. Monte Carlo Simulation 

This study employed Monte Carlo (MC) and 

molecular dynamics (MD) simulations using the 

Materials Studio 2017 software suite (Hansen 2018, 

Shankar et al. 2022) to investigate the adsorption of 5-

BTCA on the Fe(110) iron surface in an acidic 

environment. The Fe(110) surface, relevant to the mild 

steel industry, was modelled as a 10 × 10 supercell slab 

optimized with the COMPASS II force field. The 

optimized slab was enlarged to a 10 × 10 supercell and 

placed in a simulation box (24.8 × 24.8 × 38.1 Å³) with 

30 Å of vacuum along the z-axis to limit periodic 

boundary effects. The molecular geometry of 5-BTCA 

was also minimized with stringent convergence 

criteria with the Forcite module and with the 

COMPASS II force field to explicitly consider polar 

and heteroatom interactions (Akinyele et al. 2022, 

Oyeneyin et al. 2022, Oyeneyin et al. 2024). MC 

simulations identified optimal adsorption 

configurations, allowing 5-BTCA freedom to move 

over a fixed iron surface. Simulated annealing 

explored adsorption energy landscapes, while 

parameters such as total energy, adsorption energy, 

and deformation energy quantified binding strength 

and stability. This integrated approach combined 

structural optimization, configurational sampling, and 

dynamic behaviour analysis to effectively model the 

strong, spontaneous adsorption of 5-BTCA on 

Fe(110), validating its corrosion inhibition mechanism 

under acidic conditions. 

 

Results and discussion 

Geometry optimization 

5-Bromothiophene-2-carbaldehyde (5-BTCA) is a 

five-membered heterocyclic compound featuring 

functional groups such as carbonyl (C=O), carbon-

carbon double bond (C=C), carbon–bromine (C–Br), 

carbon-hydrogen (C–H), and carbon-sulfur (C–S) 

bonds, as shown in Figure 1. Its structure consists of a 

thiophene ring substituted with a carbaldehyde group 

at the 2-position and bromine at the 5-position. 

Density Functional Theory (DFT) calculations 

optimized the molecular geometry in the gas phase and 

in solvents: DMSO, ethanol, and water. The optimized 
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structures revealed that the bond lengths varied very 

little among different environments and the various 

polarities of the solvents, indicating that solvent 

polarity had little impact on the molecular geometry of 

5-BTCA (Table 1). For example, the Br-C bond length 

remained consistently 1.89 Å, and the C-S bond length 

ranged narrowly from 1.74 to 1.75 Å (Mouats et al. 

2024). Slight changes occurred in the C=C and C=O 

bonds, with ethanol inducing minor contraction or 

elongation, possibly due to intermolecular 

interactions. Overall, these findings reflect the 

structural stability of 5-BTCA under varying 

conditions and indicate only slight solvent influence 

on specific bonds, particularly with the C=O and C=C 

bonds. The similarity observed in most bond lengths 

suggests the structural stability of 5-BTCA across 

diverse conditions.  

 

Table 1. Bond lengths of 5-bromothiophene-2-carbaldehyde (5-BTCA) in different solvents 

Compounds Br-C (A) C-S (A) C=C (A) C=O (A) C-H (A) 

5-BTCA-DMSO 1.89 1.75 1.37 1.22 1.10 

5-BTCA-ethanol 1.89 1.74 1.37 1.21 1.11 

5-BTCA-H2O 1.89 1.75 1.38 1.22 1.10 

5-BTCA- Gas 1.89 1.75 1.38 1.22 1.10 

Vibrational Analysis: Vibrational studies of 5-BTCA 

revealed significant solvent effects on its molecular 

vibrations, especially in polar solvents (DMSO, 

ethanol, H2O) compared to the gas phase. The 

symmetric CH=CH stretching frequency remained 

mostly unchanged, indicating minimal solvent impact, 

while the asymmetric CH=CH stretching showed 

slight variations, with H2O causing a stiffer C=C bond 

(Table 2). Larger shifts occurred in the symmetric CH 

and C=O stretches, where H2O induced the highest CH 

frequency (2970.24 cm⁻¹) and the lowest C=O 

frequency (1663.55 cm⁻¹), reflecting strong solvent 

interactions that weaken the carbonyl and stiffen the 

CH bond (Nyquist 1986). Minor shifts in C=C 

scissoring and CH=CH rocking vibrations also 

occurred. The symmetric C-S stretching frequency 

was relatively stable but slightly higher in the gas 

phase (Šebek et al. 2013). Overall, polar solvents 

cause frequency shifts indicating reduced bond 

strengths due to solvation, while the gas phase exhibits 

stronger, more stable bonds. 

 

Table 2. Frequencies of 5-bromothiophene-2-carbaldehyde (5-BTCA) and vibrational modes in different solvents 

Assignments 5-BTCA -DMSO 

(cm-1) 

5-BTCA -ethanol 

(cm-1)  

5-BTCA -H2O (cm-

1) 

5-BTCA -Gas (cm-1) 

Symmetric CH=CH 3227.70 3227.47 3232.21 3225.49 

Asymmetric CH=CH 3207.66 3207.70 3212.57 3196.50 

Symmetric CH 2936.77 2956.74 2970.24 2884.50 

Symmetric C=O 1718.73 1687.33 1663.55 1750.52 

Scissoring C=C 1450.42, 1415.99, 

1333.86 

1448.61, 1413.20, 

1333.38 

1447.62, 1411.08, 

1333.02 

1450.61, 1413.10, 

1332.75 

Rocking CH=CH 1566.38, 1237.59, 

1227.96 

1564.77, 1238.53, 

1235.31 

1563.68, 1240.61, 

1236.14 

1565.18, 1235.78, 

1224.32 

Symmetric C-S 679.79, 652.88 680.09, 654.09 679.90, 653.42 684.05, 658.59 

 

Quantum Chemical Analysis: Quantum chemical 

descriptors from DFT calculations provide useful 

insights into the corrosion inhibition performance of 

5-BTCA in different media (Zhan et al. 2003, Huang 

et al. 2017, Badeji et al. 2024). The descriptors related 

to the corrosion inhibition performance of 5-BTCA are 

presented in Table 3 and Figures 2 and 3. Among 

solvents studied (DMSO, ethanol, water, and gas 

phase), the highest IP was observed in the gas phase 

(7.039 eV), indicating lower electron donation, while 

5-BTCA in water showed a lower IP (6.908 eV), 

suggesting enhanced electron-donating ability that 

facilitates adsorption on metal surfaces. The smaller 

HOMO-LUMO energy gaps in ethanol (4.567 eV) and 

water (4.551 eV) signify increased chemical reactivity 

and better interaction with metals, boosting inhibition 

http://www.ijbst.fuotuoke.edu.ng/
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efficiency. Additionally, the electrophilicity index was 

higher in ethanol and water, indicating stronger 

electron-accepting capabilities. Lower hardness and 

higher softness values in these aqueous media reflect 

improved adsorption potential and molecular 

reactivity. The more negative chemical potentials in 

water (-4.633 eV) and ethanol (-4.613 eV) further 

indicate a greater tendency for electron donation, 

aiding adsorption. These electronic properties 

collectively affirm that 5-BTCA exhibits superior 

corrosion inhibition in aqueous environments 

(Oladipo et al. 2023). The theoretical findings provide 

strong support for the practical application of 5-BTCA 

as an effective corrosion inhibitor, particularly in polar 

solvents. 

 

 

Figure 2. Graphical representation of the quantum chemical descriptors for the studied 5-BTCA system on different 

solventedia.

 
Figure 3. Fluctuation of the Energy Gap (Eg) for 5-Bromothiophene-2-Carbaldehyde (5-BTCA) in Different Solvent 

Media.  

 

The plot illustrates variations in the HOMO-LUMO 

energy gap across different environments, 

highlighting the influence of solvent polarity on the 

electronic properties of 5-BTCA. 

Table 3. Theoretically calculated quantum descriptor 

parameters for the investigated 5-bromothiophene-2-

carbaldehyde (5-BTCA) complex in different solvent 

media. 

Modelled Systems IP/eV EA (eV) χ (eV) HOMO/eV LUMO/eV Eg (eV) ꞷ (eV) η (eV) μ (eV) S (eV) 

http://www.ijbst.fuotuoke.edu.ng/
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Natural bond orbital (NBO) studies: NBO analysis 

of 5-BTCA (Table 4) revealed solvent-dependent 

variations in donor-acceptor interactions, especially 

between polar solvents (DMSO, ethanol, water) and 

the gas phase. The πC1–C2 → πC3–C4 interaction 

showed consistently high perturbation energies (E2) 

across all environments, with the highest energy in the 

gas phase (120.35 kcal/mol) due to less solvent 

disturbance (Hasanzadeh 2024). In polar solvents like 

ethanol and water, these energies were slightly lower 

(~98.5 kcal/mol), indicating stabilization of the π-

bonds by solvent effects. The πC3–C4 → πC9–O10 

interaction exhibited low E2 values overall, with minor 

differences between the water (-18.56 kcal/mol) and 

gas phase (-16.78 kcal/mol), suggesting weak 

interactions. The perturbation energy differences (E(j)–

E(i)) and coupling constants (F(i,j)) showed a similar 

trend across the environmental conditions, with 

negligible changes, indicating that the orbital overlaps 

across all media are stable (Mahmood et al. 2022). In 

summary, these results amplify the effect of solvent 

polarity in the stabilization and delocalization of π and 

π-bonds. 

 

Table 4. Perturbation energies (E2 kcal/mol), interaction types, energy differences (E(j)-E(i)) and coupling constant 

(F(i,j)) of 5-bromothiophene-2-carbaldehyde (5-BTCA) 
 

Compounds Donor (i) Acceptor (j) E2 (kcal/mol) E(j)-E(i) F(i,j) 

5-BTCA-DMSO π*C1 - C2         π*C3 - C4            92.95     0.01     0.061 

 πC3 - C4         π*C9 - O10            17.51     0.27     0.062 

5-BTC-Ethanol π*C1 - C2         π*C3 - C4            98.60     0.01     0.061 

 πC3 - C4         π*C9 - O10            18.29     0.27     0.063 

5-BTCA-H2O π*C1 - C2         π*C3 - C4            98.51     0.01     0.061 

 πC3 - C4         π*C9 - O10            18.56 0.27     0.064 

5-BTCA-Gas π*C1 - C2         π*C3 - C4            120.35     0.01 0.060 

 πC3 - C4         π*C9 - O10            16.78     0.28     0.061 

 

Molecular Electrostatic Potential Analysis (MESP) 

The Molecular Electrostatic Potential (MESP) of 5-

BTCA was examined across different solvents, 

revealing visually similar plots but distinct electronic 

behaviours quantified by the electrophilicity index (ω) 

(Figure 4). In the gas phase, 5-BTCA has the highest 

ω (4.819 eV), indicating strong electrophilic reactivity 

due to lack of solvent stabilization (Gadre et al. 2021). 

In contrast, DMSO, a polar solvent, shows the lowest 

ω (4.393 eV), reflecting tight stabilization of electron 

density and reduced reactivity. Ethanol (ω=4.660 eV) 

and water (ω=4.715 eV) provide moderate 

stabilization, with ω values between those of the gas 

phase and DMSO, due to their hydroxyl groups 

partially stabilizing 5-BTCA’s electronic structure. In 

spite of the similarity in the MESP plots shown below, 

there exist some subtle changes in the electron 

potential distribution. For example, there was a subtle 

difference in the electron density around Br and S 

atoms across all media due to solvent interaction; 

however, this might not be obvious. Overall, DMSO 

offers the strongest electronic stabilization, reducing 

electrophilicity, while ethanol and water allow 

moderate reactivity. Thus, the electrophilicity index 

effectively quantifies solvent effects on 5-BTCA’s 

electronic properties, despite similar MESP 

appearances, highlighting that solvent polarity 

modulates its reactivity from highly reactive in 

nonpolar conditions to more stabilized in polar 

solvents. 

 

5-BTCA-DMSO 6.824 2.204 -2.310 -6.824 -2.204 4.620 4.410 2.310 4.514 0.227 

5-BTCA-Ethanol 6.896 2.329 -2.284 -6.896 -2.329 4.567 4.658 2.284 4.613 0.437 

5-BTCA-H2O  6.908 2.357 -2.276 -6.908 -2.357 4.551 4.714 2.276 4.633 0.439 

5-BTCA-Gas 7.039 2.408 -2.316 -7.039 -2.408 4.631 4.818 2.316 4.724 0.431 

http://www.ijbst.fuotuoke.edu.ng/
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Figure 4. Pictorial representation of the molecular electrostatic potential iso-surface for 5-bromothiophene-2-

carbaldehyde (5-BTCA) on different solvent media 

 

Monte Carlo Simulation 

The Monte Carlo simulation provides valuable 

insights into the adsorption behaviour of 5-BTCA on 

metal surfaces, clarifying its corrosion inhibition 

mechanism (Neyts and Bogaerts 2012, Hansen 2018). 

Key parameters include total energy (Etot), where more 

negative values indicate a stable inhibitor-metal 

system; adsorption energy (Ead), with negative values 

signifying strong, spontaneous adsorption crucial for 

corrosion protection; deformation energy (EDef), 

reflecting structural changes upon adsorption, where 

lower values are favourable; and rigid adsorption 

energy (Erig_ad), measuring adsorption without 

structural flexibility. Both protonated 5-BTCA and 

unprotonated (5-BTCAH⁺) were simulated in an acidic 

medium containing 50 water molecules, 10 hydronium 

ions (H3O⁺), and 10 chloride ions (Cl⁻) on the Fe(110) 

crystallographic plane, a well-studied iron surface. 

The simulations as shown in Table 5 and Figure 5 

provide clarity into the corrosion inhibition whereby 

5-BTCA inhibits iron surfaces. The protonated 5-

BTCAH⁺ system showed a total energy of -3091.34 

kcal/mol and a strong adsorption energy of -3105.63 

kcal/mol, indicating stable and spontaneous binding 

despite limited structural flexibility. Its deformation 

energy of 72.90 kcal/mol suggests moderate structural 

adjustment, acceptable for efficient inhibition. 

Negative differential adsorption energies for the 

inhibitor, water, hydronium, and chloride ions 

demonstrate favourable interactions. The differential 

adsorption energy (dEad/dNi) for the inhibitor, H2O, 

hydroxonium and the chloride ion are -74.31, -13.58, 

-143.80 and -142.86 kcal/mol, respectively. This 

implies that the protonated inhibitor can effectively 

compete with corrosive species for adsorption sites, 

maintaining a protective film on the metal surface and 

enhancing corrosion resistance. 

 

 

Table 5. Monte Carlo simulation of adsorption of 5-BTCA species on Fe(110) in hydrochloric acid medium 

(50H2O/10H3O+/10Cl-) 

Systems 𝑬𝒕𝒐𝒕  

(kcal/mol) 

𝑬𝒂𝒅 

(kcal/mol) 

𝑬𝒓𝒊𝒈𝒊𝒅_𝒂𝒅 

(kcal/mol) 

𝑬𝑫𝒆𝒇 

(kcal/mol) 

𝑰𝒏𝒉𝒊𝒃𝒊𝒕𝒐𝒓: 𝒅𝑬𝒂𝒅/𝒅𝑵𝒊 

(kcal/mol) 

𝑬𝒃𝒊𝒏 

(kcal/mol) 

Protonated -3091.34 -3105.63 -3178.53 72.90 -74.31 -2716.80 

Unprotonated -3104.60 -3105.01 -3177.42 72.41 -86.17 -2713.93 

Parameters: Etot: Total energy; Ead: adsorption energy; Erigid_ad: rigid adsorption energy; dEad/dNi: differential 

adsorption energy 

 

The unprotonated form of 5-BTCA exhibits a total 

energy of -3104.60 kcal/mol, slightly lower than the 

protonated form, with a strong adsorption energy of -

3105.01 kcal/mol, indicating spontaneous binding to 

the metal surface. Its rigid adsorption energy (-

3177.42 kcal/mol) and deformation energy (72.41 

kcal/mol) closely resemble those of the protonated 

form, suggesting comparable adsorption strength and 

structural flexibility. Interaction energies with water (-

13.58 kcal/mol), H3O⁺ (-143.80 kcal/mol), and Cl- (-

142.86 kcal/mol) demonstrate strong electron 

interactions in acidic environments, implying 

competitive adsorption. The thiophene–Fe interaction 

yields –74.31 kcal/mol, while the dEad/dNi value in the 

http://www.ijbst.fuotuoke.edu.ng/
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water phase is –13.58 kcal/mol, showing minimal 

deviation, suggesting that water does not significantly 

compete for adsorption. Moreover, the values for H3O⁺ 

(–143.80 kcal/mol) and Cl⁻ (–142.86 kcal/mol) 

indicate strong electron interactions with charged 

species, which could imply competitive adsorption 

under acidic or chloride-rich conditions. Despite the 

presence of corrosive species, 5-BTCA’s strong 

adsorption limits their access to the iron surface, 

reducing corrosion risk. Since protonated species 

dominate in acidic media, they likely enhance the 

molecule’s affinity to metal through stronger 

electrostatic attraction. 

 
Figure 5. MD simulation for the adsorption of the inhibitor (5-BTCA) and its protonated form on Fe(110) surface in 

hydrochloric acid medium (a) top view of 5-BTCA (b) top view of 5-BTCAH+ (c) Side view of 5-BTCA (d) side view 

of  BTCAH+.  

 

A comparison of the two modelled inhibitors as shown 

in Table 5 illustrates that both protonated and 

unprotonated forms show strong, spontaneous 

adsorption, but the protonated form exhibits slightly 

more stable total and adsorption energies, suggesting 

better corrosion inhibition potential under acidic 

conditions (Singh et al. 2019, Arrousse et al. 2022). 

The iron surface’s strong interactions with thiophene, 

hydronium, and chloride ions may affect inhibition 

mechanisms, although competitive adsorption could 

reduce durability. Both forms undergo similar 

structural deformation upon adsorption, indicating 

good stability. These Monte Carlo and DFT results 

confirm effective adsorption of 5-BTCA, particularly 

when protonated, supporting its use as a corrosion 

inhibitor by forming stable protective films and 

interacting with competing species in corrosive 

environments, warranting further industrial 

application exploration (Singh et al. 2019, Arrousse et 

al. 2022). 
 

Mechanism of the corrosion inhibitor: The 

corrosion inhibition mechanism of 5-BTCA on the 

Fe(110) surface is elucidated through a combination of 

NBO analysis, MESP mapping, frontier molecular 

orbital descriptors, and Monte Carlo simulations. 

NBO analysis reveals substantial donor–acceptor 

interactions within the molecule, with notably high 

second-order perturbation energies (E2), particularly 

for π→π* transitions such as πC1–C2 to πC3–C4, 

reaching up to 120.35 kcal/mol in the gas phase. These 

large stabilization energies reflect strong 

intramolecular conjugation, indicating significant 

electronic delocalization and enhanced charge transfer 

ability, key factors that promote effective 

chemisorption onto metal surfaces. Supporting these 

findings, the MESP surface highlights electron-rich 

regions around the carbonyl oxygen and thiophene 

ring, depicted as red zones, which serve as likely sites 

for interaction with the electron-deficient iron surface. 

This electrostatic complementarity suggests that 

adsorption involves both chemical and physical 

interactions.   

Frontier molecular orbital analysis further emphasizes 

the molecule’s reactivity: the HOMO energies ranging 

between –6.82 and –7.04 eV demonstrate strong 

electron-donating capacity, while a Eg gap of 4.55–

4.63 eV indicates moderate chemical reactivity. 

Additionally, the measured dipole moments and 

electrophilicity indices underscore the molecule’s 

polar nature, favoring stable adsorption onto Fe(110), 

consistent with a chemisorption-driven mechanism. 

Monte Carlo simulations quantify the interaction 

strength, yielding highly negative adsorption energies 

for both protonated (–74.31 kcal/mol) and 
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unprotonated (–86.17 kcal/mol) species—values far 

exceeding typical physisorption thresholds (–10 to –

40 kcal/mol). This confirms that 5-BTCA adsorbs 

predominantly through strong chemisorption, likely 

involving coordinate or covalent bond formation with 

the iron surface. Such strong binding affinities align 

with the charge transfer capabilities suggested by 

NBO and orbital analyses. Therefore, 5-BTCA 

inhibits iron corrosion mainly via chemisorption 

characterized by robust orbital interactions and high 

adsorption energies. However, the existence of 

electron-rich electrostatic sites also implies a minor 

contribution from physisorption, indicating a mixed-

mode adsorption mechanism with chemisorption as 

the dominant process. 
 

Conclusion 

This study provides a complete theoretical analysis of 

5-bromothiophene-2-carbaldehyde (5-BTCA) as a 

corrosion inhibitor using Density Functional Theory 

(DFT) and Monte Carlo (MC) simulations. The 

obtained results show that 5-BTCA’s inhibitory 

efficiency arises from its π-electron interactions, 

donor-acceptor charge transfer, and solvent-induced 

intramolecular stabilization. The HOMO-LUMO gaps 

(4.551 eV in water, 4.567 eV in ethanol) indicate high 

reactivity, promoting efficient electron transfer to the 

metal surface. The electrophilicity index (ω = 4.714 

eV) and negative chemical potential (μ = −4.633 eV) 

further support its adsorption ability. MC simulations 

reveal both protonated and unprotonated forms adsorb 

favourably, with the protonated species exhibiting 

slightly stronger and more stable binding. NBO 

analysis confirms π-electron delocalization and lone-

pair interactions stabilize the inhibitor-metal complex, 

while Molecular Electrostatic Potential (MEPS) maps 

illustrate solvent polarity’s effect on charge 

distribution and adsorption behaviour. Overall, 5-

BTCA demonstrates strong potential as a sustainable 

corrosion inhibitor in aqueous and acidic media and 

guides the design of enhanced thiophene-based 

inhibitors. 
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