ISSN : 2488-8648
Home About IJBST For Authors Issues Useful Downloads Contact
Questions are asked and these questions need answers. This is the reason why this page is created to enable us share few worries!
×published date:2024-Nov-22
FULL TEXT in - | page 353 -363
Abstract
The study sought to assess the value of the cowpea genetic base on food security and sustainability of the crop. It equally identified several essential characteristics of the crop, as well as the relevance of information from various stakeholders. The approaches adopted included using genetic markers, phenotypic traits, and consultations with cultivating stakeholders. The analysis revealed allelic variations between and within cowpea genotypes, with Marker 1 showing allele frequencies ranging from 0. 345 to 0.445 and Marker 2 from 1. 078 to 1. 214. The phenotypic expression also showed a degree of diversity, with mean plant height at 49.862 cm, days to flowering at 70.013, and pod yield at 1270.389 kg/ha. Some of the key highlights from the stakeholder interviews included the demand for more drought-resistant varieties, genetic traits that relate to resistance against pests and diseases, and the importance of farmers being involved in the breeding process. The study offered valuable insights into existing knowledge of cowpea's genetic diversity, emphasized the importance of involving stakeholders in understanding the crop's relevance and benefits in their lives, and highlighted the potential of marker-assisted selection in enhancing cowpea breeding programs. The results reiterate the importance of cowpea research contributions to food security and the application of agricultural practices in cowpea fields. Suggested actions cover the following issues: the continuation of research on genetic characteristics; the collaboration of stakeholders; and the creation of superior varieties.
Keywords: Sustainable Agriculture, Genetic Resources, Cowpea Plants, Food Security,
Bailey-Serres, J., Parker, J., Ainsworth, E., Oldroyd, G. and Schroeder, J. (2019). Genetic strategies for improving crop yields. Nature, 575: 109–118. https://doi.org/10.1038/s41586-019-1679-0.
Boukar, O., Belko, N., Chamarthi, S., Togola, A., Batieno, J., Owusu, E., Haruna, M., Diallo, S., Umar, M., Olufajo, O. and Fatokun, C. (2019). Cowpea (Vigna unguiculata): genetics, genomics, and breeding. Plant Breeding, 138: 415–424. https://doi.org/10.1111/PBR.12589.
Carvalho, M., Bebeli, P., Pereira, G., Castro, I., Egea-Gilabert, C., Matos, M., Lazaridi, E., Duarte, I., Lino-Neto, T., Ntatsi, G., Rodrigues, M., Savvas, D., Rosa, E. and Carnide, V. (2017). European cowpea landraces for a more sustainable agriculture system and novel foods. Journal of the Science of Food and Agriculture, 97 (13): 4399–4407. https://doi.org/10.1002/jsfa.8378.
Desalegne, B., Dagne, K., Melaku, G., Ousmane, B. and Fatokun, C. (2017). Efficiency of SNP and SSR-based analysis of genetic diversity, population structure, and relationships among cowpea (Vigna unguiculata (L.) Walp.) germplasm from East Africa and IITA inbred lines. Journal of Crop Science and Biotechnology, 20: 107–128. https://doi.org/10.1007/s12892-016-0051-0.
Gomes, A., Rodrigues, A., António, C., Leitão, A., Batista-Santos, P., Nhantumbo, N., Massinga, R., Ribeiro-Barros, A. and Ramalho, J. (2020). Drought response of cowpea (Vigna unguiculata (L.) Walp.) landraces at leaf physiological and metabolite profile levels. Environmental and Experimental Botany, 175:104060. https://doi.org/10.1016/j.envexpbot.2020.104060.
Guimarães, J., Nunes, C., Pereira, G., Gomes, A., Nhantumbo, N., Cabrita, P., Matos, J., Simões, F. and Veloso, M. (2023). Genetic Diversity and Population Structure of Cowpea (Vigna unguiculata (L.) Walp.) Landraces from Portugal and Mozambique. Plants, 12 (4):846. https://doi.org/10.3390/plants12040846.
Gumede, M., Gerrano, A., Amelework, A. and Modi, A. (2022). Analysis of Genetic Diversity and Population Structure of Cowpea (Vigna unguiculata (L.) Walp) Genotypes Using Single Nucleotide Polymorphism Markers. Plants, 11(24):3480. https://doi.org/10.3390/plants11243480.
Ibeabuchi, O. and Kantamaneni, K. (2017). Climate Change Impacts, Awareness, and Perception of African Rural Farming Communities. Advances in Crop Science and Technology, 5(6): 313 https://doi.org/10.4172/2329-8863.1000313.
John, K., Vasanthi, R. and Venkateswarlu, O. (2015). Variability and correlation studies for pod yield and its attributes in the F2 generation of six virginia x spanish crosses of groundnut (Arachis hypogaea L.). Legume Research, 30: 210–213.
Huynh, Q.L, Benet-Martínez, V, Nguyen, A.D. (2018). Measuring variations in bicultural identity across U.S. ethnic and generational groups: Development and validation of the Bicultural Identity Integration Scale-Version 2 (BIIS-2). Psychol Assess, 30 (12):1581-1596. doi: 10.1037/pas0000606.
Ketema, S., Tesfaye, B., Keneni, G., Fenta, B., Assefa, E., Greliche, N., Machuka, E. and Yao, N. (2020). DArTSeq SNP-based markers revealed high genetic diversity and a structured population in Ethiopian cowpea [Vigna unguiculata (L.) Walp] germplasm. PLoS ONE, 15 (10): e0239122, https://doi.org/10.1371/journal.pone.0239122.
Liang, Q., Muñoz‐Amatriaín, M., Shu, S., Lo, S., Wu, X., Carlson, J., Davidson, P., Goodstein, D., Phillips, J., Janis, N., Lee, E., Liang, C., Morrell, P., Farmer, A., Xu, P., Close, T. and Lonardi, S. (2023). A view of the pan-genome of domesticated cowpea (Vigna unguiculata [L.] Walp.). The Plant Genome, 17 (1):e20319, https://doi.org/10.1002/tpg2.20319.
Lonardi, S., Muñoz‐Amatriaín, M., Liang, Q., Shu, S., Wanamaker, S., Lo, S., Tanskanen, J., Schulman, A., Zhu, T., Luo, M., Alhakami, H., Ounit, R., Hasan, A., Verdier, J., Roberts, P., Santos, J., Ndeve, A., Doležel, J., Vrána, J., Hokin, S., Farmer, A., Cannon, S. and Close, T. (2019). The genome of cowpea (Vigna unguiculata [L.] Walp.).The Plant Journal: Cell and Molecular Biology, 98 (5): 767–782. https://doi.org/10.1111/tpj.14349.
Mekonnen, T., Gerrano, A., Mbuma, N. and Labuschagne, M. (2022). Breeding of Vegetable Cowpea for Nutrition and Climate Resilience in Sub-Saharan Africa: Progress, Opportunities, and Challenges. Plants, 11(12): 1583, https://doi.org/10.3390/plants11121583.
Omomowo, O. and Babalola, O. (2021). Constraints and Prospects of Improving Cowpea Productivity to Ensure Food, Nutritional Security, and Environmental Sustainability. Frontiers in Plant Science, 12:751731. https://doi.org/10.3389/fpls.2021.751731.
Pandit, E., Pawar, S. and Pradhan, S. (2021). Marker-Assisted Backcross Breeding for Improvement of Submergence Tolerance and Grain Yield in the Popular Rice Variety, ‘Maudamani’. Agronomy, 11(7):1263. https://doi.org/10.3390/AGRONOMY11071263.
Pei, D. Song, S. Kang, J. Zhang, C. Wang, J. Dong, T. Ge, M. Pervaiz, T. Zhang, P. and Fang, J. (2023). Characterization of Simple Sequence Repeat (SSR) Markers Mined in Whole Grape Genomes. Genes, 14: 663. https://doi.org/10.3390/genes14030663.
Ravelombola, W., Shi, A., Chen, S., Xiong, H., Yang, Y., Cui, Q., Olaoye, D. and Mou, B. (2020). Evaluation of cowpeas for drought tolerance at the seedling stage. Euphytica, 216: 1–19. https://doi.org/10.1007/s10681-020-02660-4.
Santos, S., Damasceno-Silva, K., Aragão, W., Araújo, M. and Rocha, M. (2020). Genetic control of traits related to maturity in cowpeas Crop Breeding and Applied Biotechnology, 20 (4): e32722049, https://doi.org/10.1590/1984-70332020v20n4a62.
Sodedji, F., Agbahoungba, S., Agoyi, E., Kafoutchoni, M., Choi, J., Nguetta, S., Assogbadjo, A. and Kim, H. (2021). Diversity, population structure, and linkage disequilibrium among cowpea accessions. The Plant Genome, 14 (3): e20113. https://doi.org/10.1002/tpg2.20113.
Spriggs, A., Henderson, S., Hand, M., Johnson, S., Taylor, J. and Koltunow, A. (2018). Assembled genomic and tissue-specific transcriptomic data resources for two genetically distinct lines of Cowpea (Vigna unguiculata (L.) Walp). Gates Open Research, 2:7 https://doi.org/10.12688/gatesopenres.12777.2.
Yao, J., Zhao, D., Chen, X., Zhang, Y. and Wang, J. (2018). Use of genomic selection and breeding simulation in cross-prediction for improvement of yield and quality in wheat (Triticum aestivum L.). The Crop Journal, 6 (4): 353–365 https://doi.org/10.1016/J.CJ.2018.05.003.
Zafeiriou, I., Sakellariou, M. and Mylona, P. (2023). Seed Phenotyping and Genetic Diversity Assessment of Cowpea (V. unguiculata) Germplasm Collection. Agronomy, 13(1): 274 https://doi.org/10.3390/agronomy13010274.
FULL TEXT in - | page 353 -363
Issue 4-Oct-Dec
Issue 3-Jul-Sep
Issue 2-Apr-Jun
Issue 1-Jan-Mar
Issue 4-Oct-Dec
Issue 3-Jul-Sep
Issue 2-Apr-Jun
Issue 1-Jan-Mar
Issue 4-Oct-Dec
Issue 3-Jul-Sep
Issue 2-Apr-Jun
Issue 1-Jan-Mar
Issue 4-Oct-Dec
Issue 2-Apr-Jun
Issue 1-Jan-Mar
Issue 4-Oct-Dec
Issue 3-Jul-Sep
Issue 4-Oct-Dec
Issue 2-Apr-Jun
Issue 1-Jan-Mar
Issue 4-Oct-Dec
Issue 3-Jul-Sep
Issue 2-Apr-Jun
Issue 4-Oct-Dec
Issue 1-Jan-Mar
Copyright © International Journal of Basic Science and Technology | Faculty of Science, Federal University Otuoke 2019. All Rights Reserved.
P.M.B. 126, Yenagoa. Bayelsa state Nigeria
Get the most recent updates
and be updated your self...