ISSN : 2488-8648


International Journal of Basic Science and Technology

A publication of the Faculty of Science, Federal University Otuoke, Bayelsa State

Home About IJBST For Authors Issues Useful Downloads Contact


FAQ OJBST

Questions are asked and these questions need answers. This is the reason why this page is created to enable us share few worries!

×
Archive | ISSUE: , Volume: Oct-Dec-2022

Investigation of the properties of Zinc Tin Arsenide (ZnSnAs2) and Zinc Tin Antimonide (ZnSnSb2): A density functional approach


Author:Omehe Nnamdi

published date:2023-Oct-11

FULL TEXT in - | page 313 -320

Abstract

Zinc Tin arsenide (ZnSnAs2) and Zinc Tin antimonide ((ZnSnSb2) have been investigated within the density functional framework. The structure optimization, band structure, and total and partial density of states were computed using the pseudopotential method with projector augmented wave (PAW). The PAWs were used in conjunction with the LDA+U scheme. The values obtained from the structure optimization showed excellent agreement with experimental data in the literature. The band structure calculations predicted that the materials are semiconductors with direct band gap values of 0.83 eV and 0.43 eV for ZnSnAs2 and ZnSnSb2, respectively. The Partial density of state shows that the As-4p states are dominant in the valence and conduction band in the ZnSnAs2, while for ZnSnSb2, the conduction band is mostly Sn-5s state

Keywords: Chalcopyrites, Solar cell, Electronic band structure, Optoelectronics, Thermoelectricity

References

Ahmad, S. and Ashraf, M. (2013). Opto-electronic properties of ternary chalcopyrite AIBIIIC2VI and AIIBIVC2V semiconductors.

Basalaev Y. (2015),.Ab initio study of the ZnSnSb2 semiconductor, semiconductor 52 (13), 1715- 1720.

Gonze, X., Beuken, J.M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G.M., Sindic, L., Verstraete, M., Zerah, G., Jollet, F., Torrent, M., Roy, A., Mikami, M., Ghosez, P., Raty, J.Y., and Allan, D.C. (2002). First-principles computation of material properties: the Abinit software project, Computational Materials Science, 25 : 478-492

Gonze, X., Rignanese, G.M., Verstraete, M., Beuken, J.M., Pouillon, Y., Caracas, R., Jollet, F., Torrent, M., Zerah, G., Mikami ,M., Ghosez, P., Veithen, M., Raty, J.Y., Olevano, V., Bruneval, F., Reining,  L., Godby,  R., Onida, G., Hamann, D. R., and Allan, D. C.( 2005).  A brief Introduction to the Abinit software package. Z. Kristallogr. 220, 558-562.

Hayashi, K., Uchitomi, N., Yamagami, K., Happo, N., and Hosokawa, S. (2016).  Large As sublattice distortion in sphakerite ZnSnAs2 thin films revealed by X-ray flourescence holography, J. Appl.. Phys. 119, 125703

Jafarova, V., Huseynova, S., Orudzhev, G., Uchitomi, N., Wakita, K., and Mamedor, N. (2015), Ab initio study of ferromagnetism in Mn-doped ZnSnAs2, Phys. Status solidi c. 1-4.

Jafarova , V. N. (2022). Structural and Electronic properties of ZnSnAs2: Afirst-principal study      by MGGA method, Pramana 96, 169.

Levalois, M. and Allais, G. (1988). Etude structurale, par diffraction de R-X, des liaisons dans       les semiconducteurs ternaires ZnSiAs2 et ZnSnAs2, Phys. Status solidi A,109, 111.

Madelung, O.  (2004), Semiconductors: Data Hand book, Springer, 3rd edition.

Marenkin, S. F., Trkhan, V. M., Palkina, K. K., Haliakevich, T. V., and Molchanov, A. V. (2006).  Growth and structure of ZnSnAs2 crystals, Russ. J. Inorg. Chem. 51(5), 790-793.

Mecheri, B., Meradji, H., Boukhouta, M., Ghemid ,S., and Bendjoddou, H. (2021). Structural and Electronic properties of ZnSiAs2 and ZnSnAs2, and their mixed crystals ZnSi1-xSnAs2.

Murtaza G., Sibghat-Ullah, Khenata R., Reshak A. H., and Hayat S. S. (2014), Optoelectronic propertiesof XYAs2 (X=Zn, Cd; Y=Si, Sn) chalcopyrite compounds, J. Opto. Adv. Mater. 16,No 1-2, p 110-116

Nomura A., Choi S., Ishimaru M., Kosuga A., Chasapis T., Ohio S., Snyder G., J., Ohishi Y.,         Muta H., Yamanaka S., and Kurosaki K. (2018), Chalcopyrite ZnSnSb2: a promising t         hermoelectric material, ACS appl. Mater. Inter/ 10 (50).

Shaposhnikov V, L., Krisvosheeva A. V., Borisenko V. E. (2012), Ab initio modeling of the structural, electronic, and optical properties of AIIBIVC2V semiconductors, Phys, Rev. B 85,         205201.

Shigeeda Y, Nagacoka A., Yoshino K., Nishioka K. (2021), Growth and thermoelectric characterization of chalcopyrote  ZnSnSb2 with pseudocubic structure, J. Phys. Chem. Solids.

Soni, A., Guar, A., Khan, K., and Sahariya J. (2002). Electronic, structural and optical features for ternary ZnSnAs2 compound: A first principle density functional investigation., 19, part 2.

Sreeparvathy P. C. (2019).  First principle investigation of thermoelectric materials, PhD thesis,

 http://localhost:8080/jspui/handle/123456789/502.

Stokowski, S. E. (1972). Optical spectra of some II-IV-V2 ternary compounds, Phys. Rev. B 6,      1924.

Tenga , A., Garci F. J., Mikhaylushkin A. S., Espinosa-Arronte B., Anderson M., and Ha, U. (2005). Sphalerite-chalcopyrite polymorphism in semimetallic ZnSnSb2, Chem. Mater. 17, nos     24, 6080-6085.

FULL TEXT in - | page 313 -320

Issue Archive

Volume 12 2026

Volume 11 2025

Volume 10 2024

Issue 3-Jul-Sep
Issue 2-Apr-Jun
Issue 1-Jan-Mar

Volume 9 2023

Issue 4-Oct-Dec
Issue 3-Jul-Sep
Issue 2-Apr-Jun
Issue 1-Jan-Mar

Volume 8 2022

Issue 4-Oct-Dec
Issue 3-Jul-Sep
Issue 2-Apr-Jun
Issue 1-Jan-Mar

Volume 7 2021

Issue 4-Oct-Dec
Issue 2-Apr-Jun
Issue 1-Jan-Mar

Volume 6 2020

Issue 4-Oct-Dec
Issue 3-Jul-Sep

Volume 5 2019

Issue 4-Oct-Dec
Issue 2-Apr-Jun
Issue 1-Jan-Mar

Volume 4 2018

Issue 4-Oct-Dec
Issue 3-Jul-Sep
Issue 2-Apr-Jun

Volume 3 2017

Issue 4-Oct-Dec
Issue 1-Jan-Mar

Volume 2 2016

Issue 4-Oct-Dec

Volume 1 2015

Issue 4-Oct-Dec


Copyright © International Journal of Basic Science and Technology | Faculty of Science, Federal University Otuoke 2019. All Rights Reserved.
P.M.B. 126, Yenagoa. Bayelsa state Nigeria