ISSN : 2488-8648
Home About IJBST For Authors Issues Useful Downloads Contact
Questions are asked and these questions need answers. This is the reason why this page is created to enable us share few worries!
×published date:2023-Oct-11
FULL TEXT in - | page 313 -320
Abstract
Zinc Tin arsenide (ZnSnAs2) and Zinc Tin antimonide ((ZnSnSb2) have been investigated within the density functional framework. The structure optimization, band structure, and total and partial density of states were computed using the pseudopotential method with projector augmented wave (PAW). The PAWs were used in conjunction with the LDA+U scheme. The values obtained from the structure optimization showed excellent agreement with experimental data in the literature. The band structure calculations predicted that the materials are semiconductors with direct band gap values of 0.83 eV and 0.43 eV for ZnSnAs2 and ZnSnSb2, respectively. The Partial density of state shows that the As-4p states are dominant in the valence and conduction band in the ZnSnAs2, while for ZnSnSb2, the conduction band is mostly Sn-5s state
Keywords: Chalcopyrites, Solar cell, Electronic band structure, Optoelectronics, Thermoelectricity
Ahmad, S. and Ashraf, M. (2013). Opto-electronic properties of ternary chalcopyrite AIBIIIC2VI and AIIBIVC2V semiconductors.
Basalaev Y. (2015),.Ab initio study of the ZnSnSb2 semiconductor, semiconductor 52 (13), 1715- 1720.
Gonze, X., Beuken, J.M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G.M., Sindic, L., Verstraete, M., Zerah, G., Jollet, F., Torrent, M., Roy, A., Mikami, M., Ghosez, P., Raty, J.Y., and Allan, D.C. (2002). First-principles computation of material properties: the Abinit software project, Computational Materials Science, 25 : 478-492
Gonze, X., Rignanese, G.M., Verstraete, M., Beuken, J.M., Pouillon, Y., Caracas, R., Jollet, F., Torrent, M., Zerah, G., Mikami ,M., Ghosez, P., Veithen, M., Raty, J.Y., Olevano, V., Bruneval, F., Reining, L., Godby, R., Onida, G., Hamann, D. R., and Allan, D. C.( 2005). A brief Introduction to the Abinit software package. Z. Kristallogr. 220, 558-562.
Hayashi, K., Uchitomi, N., Yamagami, K., Happo, N., and Hosokawa, S. (2016). Large As sublattice distortion in sphakerite ZnSnAs2 thin films revealed by X-ray flourescence holography, J. Appl.. Phys. 119, 125703
Jafarova, V., Huseynova, S., Orudzhev, G., Uchitomi, N., Wakita, K., and Mamedor, N. (2015), Ab initio study of ferromagnetism in Mn-doped ZnSnAs2, Phys. Status solidi c. 1-4.
Jafarova , V. N. (2022). Structural and Electronic properties of ZnSnAs2: Afirst-principal study by MGGA method, Pramana 96, 169.
Levalois, M. and Allais, G. (1988). Etude structurale, par diffraction de R-X, des liaisons dans les semiconducteurs ternaires ZnSiAs2 et ZnSnAs2, Phys. Status solidi A,109, 111.
Madelung, O. (2004), Semiconductors: Data Hand book, Springer, 3rd edition.
Marenkin, S. F., Trkhan, V. M., Palkina, K. K., Haliakevich, T. V., and Molchanov, A. V. (2006). Growth and structure of ZnSnAs2 crystals, Russ. J. Inorg. Chem. 51(5), 790-793.
Mecheri, B., Meradji, H., Boukhouta, M., Ghemid ,S., and Bendjoddou, H. (2021). Structural and Electronic properties of ZnSiAs2 and ZnSnAs2, and their mixed crystals ZnSi1-xSnAs2.
Murtaza G., Sibghat-Ullah, Khenata R., Reshak A. H., and Hayat S. S. (2014), Optoelectronic propertiesof XYAs2 (X=Zn, Cd; Y=Si, Sn) chalcopyrite compounds, J. Opto. Adv. Mater. 16,No 1-2, p 110-116
Nomura A., Choi S., Ishimaru M., Kosuga A., Chasapis T., Ohio S., Snyder G., J., Ohishi Y., Muta H., Yamanaka S., and Kurosaki K. (2018), Chalcopyrite ZnSnSb2: a promising t hermoelectric material, ACS appl. Mater. Inter/ 10 (50).
Shaposhnikov V, L., Krisvosheeva A. V., Borisenko V. E. (2012), Ab initio modeling of the structural, electronic, and optical properties of AIIBIVC2V semiconductors, Phys, Rev. B 85, 205201.
Shigeeda Y, Nagacoka A., Yoshino K., Nishioka K. (2021), Growth and thermoelectric characterization of chalcopyrote ZnSnSb2 with pseudocubic structure, J. Phys. Chem. Solids.
Soni, A., Guar, A., Khan, K., and Sahariya J. (2002). Electronic, structural and optical features for ternary ZnSnAs2 compound: A first principle density functional investigation., 19, part 2.
Sreeparvathy P. C. (2019). First principle investigation of thermoelectric materials, PhD thesis,
http://localhost:8080/jspui/handle/123456789/502.
Stokowski, S. E. (1972). Optical spectra of some II-IV-V2 ternary compounds, Phys. Rev. B 6, 1924.
Tenga , A., Garci F. J., Mikhaylushkin A. S., Espinosa-Arronte B., Anderson M., and Ha, U. (2005). Sphalerite-chalcopyrite polymorphism in semimetallic ZnSnSb2, Chem. Mater. 17, nos 24, 6080-6085.
FULL TEXT in - | page 313 -320
Issue 3-Jul-Sep
Issue 2-Apr-Jun
Issue 1-Jan-Mar
Issue 4-Oct-Dec
Issue 3-Jul-Sep
Issue 2-Apr-Jun
Issue 1-Jan-Mar
Issue 4-Oct-Dec
Issue 3-Jul-Sep
Issue 2-Apr-Jun
Issue 1-Jan-Mar
Issue 4-Oct-Dec
Issue 2-Apr-Jun
Issue 1-Jan-Mar
Issue 4-Oct-Dec
Issue 3-Jul-Sep
Issue 4-Oct-Dec
Issue 2-Apr-Jun
Issue 1-Jan-Mar
Issue 4-Oct-Dec
Issue 3-Jul-Sep
Issue 2-Apr-Jun
Issue 4-Oct-Dec
Issue 1-Jan-Mar
Copyright © International Journal of Basic Science and Technology | Faculty of Science, Federal University Otuoke 2019. All Rights Reserved.
P.M.B. 126, Yenagoa. Bayelsa state Nigeria
Get the most recent updates
and be updated your self...