ISSN : 2488-8648
Home About IJBST For Authors Issues Useful Downloads Contact
Questions are asked and these questions need answers. This is the reason why this page is created to enable us share few worries!
×published date:2023-Oct-12
FULL TEXT in - | page 218 - 223
Abstract
The electronic structure optimization, electronic band structure, density of states and optical properties of monoclinic Potassium Antimonide (Ksb), Orthorhombic Caesium Antimonide (CsSb), and Rubidium Antimonide (RbSb) have been performed. The computations used the density functional theory (DFT) framework, utilizing the pseudopotential method with projector augmented wave (PAW). The GGA+U technique was used for the computations. The calculated results showed that these materials are semiconductors, and the optimization was found to be in good agreement with experimental findings. From the findings of this research work, KSb has a direct band gap occurring at the Y point of high symmetry with a value of 0.47 eV, CsSb has a direct band gap at the zone's centre with a value of 0.38 eV, and RbSb's direct band gap occurring at the Gamma point with a value of 0.18 eV. The calculated value of ε_1 (0) for KSb, CsSb, and RbSb are about 7, 105, and 65, respectively.
Keywords: Pnictides, Bandgap, ,,
Ettema, A. R. H. E. and de Groot, R. A. (2002). Electronic structure of Cs2KSb and K2CsSb, Phys. Rev. B 66, 115102.
C. Cocchi, S. Mistry, M. Schmeizer, R. Amador, J. Kunhn, and T Kamps (2019). Electronic structure and core electron fingerprints of Caesium-based multi-alkali anitmonides for ultra-bright electron sources, Sci report 9, 18276.
Ebina, A. and Takahashi, T. (1972) Transmittance Spectra and Optical Constants of Alkali-Antimony Compounds K3Sb, Na3Sb, and Na2KSb. J. of Physical Review 3 (7) 10
Ettema, H.F. and de Groot, R.A. 1999) Bandstructure calculations of the hexagonal and cubic phases of K3Sb. J. Phys. Condens. Matter (11) (759–766)
Ettema, H.F. and de Groot, R.A. (1999) Bandstructure calculations of the hexagonal and cubic phases of K3Sb. J. Phys. Condens. Matter (11) (759–766).
Murtaza, M. Ullah, N. Ullah, M. Rani, M. Muzammil, R. Khenata, S. M. and Khan, U. (2016). Structural, elastic, electronic, and optical properties of bi-alkali antimonides, Bull. Mater Sci. 39, 1581 – 1591.
Gonze X., Beuken J.-M., Caracas R., Detraux F., Fuchs M., Rignanese G.-M., Sindic L., Verstraete M., Zerah G., Jollet F., Torrent M., Roy A., Mikami M., Ghosez Ph., Raty J.-Y., and Allan D.C. (2002). First-principles computation of material properties : the Abinit software project, Computational Materials Science 25, 478-492.
Gonze X., Rignanese G.-M., Verstraete M., Beuken J.-M., Pouillon Y., Caracas R., Jollet F., Torrent M., Zerah G., Mikami M., Ghosez Ph., Veithen M., Raty J.-Y., Olevano V., Bruneval F., Reining L., Godby R., Onida G., Hamann D. R., and Allan D. C. (2005). A brief Introduction to the Abinit software package. Z. Kristallogr. 220, 558-562 .
Guo, S. (2014) Electronic structures and elastic properties of X3Sb (X = Li, K, Cs) from the first-principles calculations Materials Research Express (1) 015906
Kalarasse, B. Bennecer, and F. kalarasse (2010), Opticl properties of the alkali antimonide semiconductors Cs3Sb ,CsK2Sb, J. Phys. Chem solid 71, 314-322.
Madelung O. (2004), Semiconductors: Data Hand book, Springer, 3rd edition.
S-H. Wei and A. Zunger (1987). Electronic structure of M31Sb type filled tetrahedral semiconductors, Phys Rev. B 35, 3952 – 3961.
S. Moolagadukkam, K. A. Bopaiah, P. K. Parakkandy, and S. Thomas (2022). Antimony (Sb) – based anodes for lithium – ion batteries: recent advances. condens matter 2022, 7 (1) 27.
S. Terlicka, W. Gasior, and A. Debski (2020). Thermodynamics properties of Li–Sb liquid solution of QAM, Metall. Mater. Trans, 51A, 4826-4837.
Schubert, S., Wong, J., Feng, J., Karkare, S., Padmore, H., Ruiz-Osѐs, M., Smedley, J., Muller, E., Ding, Z., Gaowei, M., Attenkofer, K., Liang, X., Xie, J., and Kӵhn, J. (2016) Bi-alkali antimonide photocathode growth: An X-ray diffraction study Journal of Applied Physics (120), 035303
Kangi and Y. S. (2020). Electronic structure and optical properties of cubic crystal K2CsSb, K3Sb and Cs3Sb cathode materials, acta photonical sinica, vol 49 issue 1, 0116001.
V-A Ha, G. F. Ricci, and D. Dahliah (2019). Computational driven high-through put identification of Cate and Li3Sb as promising candidate for high mobility p- type transparent conducting materials, Phys. Rev. Mater 3, 034101.
Chaldyshev, V.P. kiseley I. klimin, V.V. (1979). Optical properties of cubic K3Sb, Sov. Phys. J 22, 135-140.
Kiseley V.V. (1989). Optical properties of cubic K3Sb: dependence of theoretical electron spectroa and dielectric function on the pseudo potential parameters, Sov. Phys. J 32, 510-515.
Wang, K. Zhang, M. Jin, L. Ren, Y. Han, Q. Wang, Y. (2022). First – principles investigation of structural electronic and optical properties of cubic K2CsSb with different surface orientations, Solid state communications vol. 356, 114960.
FULL TEXT in - | page 218 - 223
Issue 3-Jul-Sep
Issue 2-Apr-Jun
Issue 1-Jan-Mar
Issue 4-Oct-Dec
Issue 3-Jul-Sep
Issue 2-Apr-Jun
Issue 1-Jan-Mar
Issue 4-Oct-Dec
Issue 3-Jul-Sep
Issue 2-Apr-Jun
Issue 1-Jan-Mar
Issue 4-Oct-Dec
Issue 2-Apr-Jun
Issue 1-Jan-Mar
Issue 4-Oct-Dec
Issue 3-Jul-Sep
Issue 4-Oct-Dec
Issue 2-Apr-Jun
Issue 1-Jan-Mar
Issue 4-Oct-Dec
Issue 3-Jul-Sep
Issue 2-Apr-Jun
Issue 4-Oct-Dec
Issue 1-Jan-Mar
Copyright © International Journal of Basic Science and Technology | Faculty of Science, Federal University Otuoke 2019. All Rights Reserved.
P.M.B. 126, Yenagoa. Bayelsa state Nigeria
Get the most recent updates
and be updated your self...