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Introduction 

Several modelling approaches have been used to 

forecast different datasets, among which are long 

memory models that allow a time series process to be 

fractionally integrated. When the time series is 

detected to have seasonality, removing the impact of 

any seasonality from a time series before analysis 

takes place leads to a loss of information.  It is 

necessary, to investigate the efficiency of the model 

when the seasonal frequency is incorporated into the 

estimation procedure and the series is allowed to be 

integrated of a fractional order. This work compairs, 

the efficiency of a seasonal autoregressive integrated 

moving-average model,   auto-regressive fractionally 

integrated moving-average model and a seasonal auto-

regressive fractionally integrated moving-average 

model when there is evidence of seasonality and long 

memory in the series. 
 

Long Memory Process: Long memory in time series 

can be defined as autocorrelation at long lags 

(Robinson, 1995). According to Jin and Frechette 

(2004), memory means that observations are not 

independent (each observation is affected by the 

events that preceded it). The autocorrelation function 

(acf) of a time series yTi is defined as: 

ρk = cov (yt ,yt-1) / var (yt)                (2.1)   
where; 

ρk is the autocorrelation function,                                                                                                   
cov (yt ,yt-1) is the covariance of a time series and the 
one succeeding it, and                                        
var (yt) is the variance of the time series 
For integer lag k, a covariance stationary time-series 

process is expected to have autocorrelations such that 

limk→∞ ρk= 0. Most of the well-known classes of 

stationary and invertible time series have 

autocorrelations that decay at an exponential rate, so 

that ρk≈|m|k, where |m|< 1, and this property is true, 

for example, for the well-known stationary and 

invertible ARMA(p,q) process. For long memory 

processes, the autocorrelations decay at a hyperbolic 

rate, which is consistent with ρk ≈ Ck2d–1, as k 

increases without limit, where C is a constant and d is 

the long memory parameter. 

 

ARFIMA model:  

Fractional integration is a generalisation of integer 

integration, under which time series are usually 

presumed to be integrated of order zero or one. For 

example, an autoregressive moving-average process 

integrated of order d[denoted by ARFIMA(p, d, q)] 

can be represented as: 

– L)dϕ(L)yt = θ(L)µt                                                  (2.2) 

where, ut is an independently and identically 

distributed (i.i.d.) random variable with zero mean and 

constant variance, L denotes the lag operator; and ϕ(L) 
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and θ(L) denote finite polynomials in the lag operator 

with roots outside the unit circle. For d = 0, the process 

is stationary, and the effect of a shock u(t) on y(t + 

j)decays geometrically as j increases. For d=1, the 

process is said to have a unit root, and the effect of a 

shock u(t)on y(t + j) persists into the infinite future. In 

contrast, fractional integration defines the function (1 

– L)d for non-integer values of the fractional 

differencing parameter d. 
 

SARFIMA model: 

Let {Xt} be a zero-mean seasonal fractionally 

integrated process defined as  

( ) ( )1 1
Dd s

t tB B X − − =
              (2.3)

 

For t=1,...,n, where 0<d, D<0.5, εt ∈Z is a white-noise 

process with zero mean, variance, B is the usual 

backshift operator and s is the seasonal period. The 

process specified by (2.3) is the seasonal fractionally 

integrated processes denoted here by 

SARFIMA(0,d,0)×(0,D,0)s. A more general class of 

seasonal models can be generated by allowing {Xt} to 

be a stationary and invertible seasonal ARMA process. 
 

Materials and Methods 

The data used for this study is secondary data, 

collected from the net; climate.gov. The data 

comprises the monthly average global temperature 

from 2001 through 2018 and is measured in degrees 

Fahrenheit  

The time plot of the temperature series is shown in 

Figure 4.1 indicates that the series is seasonal. 

Figure 4.1: Time Plot of the Temperature Series of the Average Global temperature measured in degrees 

Fahrenheit   

 

This however, does not guarantee that there is neither 

a secular unit root nor a seasonal unit root. As such, 

more investigations were done by exploring the ACF 

and PACF plots. 

 The ACF plot shows a repeated sine, downward 

movement and a slow exponential while the PACF 

plot in Figure 4.2, shows both upward and downward 

movement, suggesting that the series is not stationary. 

The slow exponential decay of the ACF indicates a 

long memory property of the series. These plots 

strengthen the suspicion that the series may have the 

presence of secular and seasonal variation. here was a 

significant upward trend from year 2010. 
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Figure 4.2: ACF and PACF Plot of the Temperature Series before Differencing 

 

Testing for Long Memory 

The presence of long memory was further tested using 

Hurst exponent (H) produced by the Rescaled range 

analysis. All steps of the calculation of H was done 

using a program in R. The value of H was obtained to 

be 0.71394, indicating that average temperature data 

has a long memory structure since 0.5 < H < 1  

 

Testing for Stationarity and Seasonality 

For confirmation and verification of these assertions 

from the plot, if there is presence of unit root in the 

series, the Augmented Dickey Fuller test is mostly 

used as described in Fuller (1967).  The Augmented 

Dickey-Fuller test for unit root and the Wo-test for 

seasonality were adopted to investigate the presence of 

trend and seasonality in the series.  

The ADF test examines the null hypothesis that the 

time series Yt  is stationary against the alternative that 

it is non-stationary, likewise, the Wo test which 

examines the null hypothesis that there is a presence 

of seasonality in the series against the alternative that 

there is no presence of seasonality in the series.   

The Augmented Dickey-Fuller test with test statistic -

3.6504 and p-value 0.02923 rejects the alternative 

hypothesis of stationarity. This therefore shows strong 

evidence and indicates that the series is not stationary 

at 1% significance level. The Wo-test developed by 

Webel and Ollech (2019), for the original series with 

a test statistic value of 0.0000012 and a p-value 0.000 

do not reject the alternative hypothesis of non-

seasonality. This indicates a strong presence of a 

seasonal component in the series. Therefore, there is 

strong evidence to conclude that the series is not 

stationary and as such should be subjected to seasonal 

and secular differencing. 
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Table 4.1 Summary of the secular and seasonal variation test 

Method differencing order lag order test statistic p-value 

Augmented Dickey Fuller 0 6 -3.6504 0.02923 

Augmented Dickey Fuller 1 6 -9.2027 0.01 

Wo-test 0 1 1.2 x 10-6 0.000 

Wo-test 12 1 0.0018 0.0417 

Wo-test 24 1 0.9652 0.9982 

R version 3.5.3 

 

After the first differencing, the augmented Dickey-

Fuller test was rerun and was found to be stationary. 

We therefore conclude that the model, after first 

differencing, became stationary.  

Similarly, the Wo-test was rerun for the series after 

seasonal differencing. The wo-test statistic gave a Re: 

result of 0.0018 and a p-value 0.0417.This result as 

shown in table 4.1, indicates that the series was still 

seasonal after first differencing at 1% significance 

level but was isolated at 5% significance level. Thus, 

we can conclude that the series is slightly seasonal 

after first differencing

. 
 

Figure 4.3  Time plot of the series after secular and seasonal decomposition 

 

In an attempt to get the best model, we adopted the 

Box and Jenkins (1976) approach to fit a SARIMA 

model. This approach involves determining the order 

of the AR and MA processes from the PACF and ACF 

plots, respectively. As such, the ACF and PACF plots 

for the series differenced at different lags is presented 

in Figure 4.4 below

http://www.ijbst.fuotuoke.edu.ng/
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Figure 4.4 ACF and PACF plot after secular and seasonal decomposition 
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F

rom the ACF and PACF plots, we see a significant cut-

off in both plots. From the Box and Jenkins approach 

for identifying a model, we ascertained a possible 

SARIMA model of order (2,2,1)(2,1,1)12. This may 

not be the most appropriate model that gives the best 

fit for a SARIMA model, because of the long property 

observed in the ACF plot, so we diagnose the 

SARIMA(2,2,1)(2,1,1)12 to ascertain if the model is 

appropriate by fitting the ACF of the Residual. 

Model Estimation 

 

Call: 

arima(x = tsdata1, order = c(2, 2, 1), seasonal = list(order = c(

2, 1, 1))) 

 

Coefficients: 

          ar1      ar2      ma1     sar1    sar2    sma1 

      -0.5338  -0.2829  -0.9998  -0.0861  0.1187  0.5057 

s.e.   0.0656   0.0695   0.0218   0.5293  0.2319  0.5164 

 

sigma^2 estimated as 675.32:  log likelihood = -714.32,  aic = 14

42.63 

 

Training set error measures: 

                     ME     RMSE      MAE       MPE     MAPE      

MASE       ACF1 

Training set -0.9426463 5.843794 3.269185 -27.99146 44.97579 0.26

92348 0.02069044 
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Though the SARIMA model is adequate, it may 

however not be the most efficient. Therefore, we adopt 

the auto fit in R package to get the model with the best 

fit for ARFIMA and SARFIMA model. 

 

Model Fitting and Comparison 

The auto fitting functions present in the R package, 

were used to obtain the optimal model based on 

Alkaike Information Criterion and Bayesian 

Information Criterion. The auto.arima function in the 

R package forecast was used to fit the SARIMA model 

while the arfima function was used for the ARFIMA 

and SARFIMA model based on the algorithm 

presented by Olatayo and Adedotun (2014). Now we 

shall discuss the result of these model estimations and 

identify the model that best fit (in terms of efficiency, 

based on the least standard error, AIC and BIC). 

Table 4.2 shows the best models in terms of AIC 

model selection with estimators.  NA indicates the 

corresponding parameter is not estimated and is set to 

be 0. The numbers in parentheses in the column of AIC 

(BIC) denote the ranking of models in terms of AIC 

(BIC) 
 

 

Table 4.3 Summary of model estimation for the best models 

SARIMA (2,2,1)(2,1,2)12 
 

AR1 AR2 AR3 AR4 MA1 SAR1 SAR2 SMA1 D D 

Estimate -0.5338 -0.2829 NA NA -0.9998 -0861 0.1187 05057 1 1 

Se 00656 0.0695 NA 0.0033 0.0218 0.5293 0.2319 0.5164 
  

ARFIMA (2,-0.0468,1) 
 

AR1 AR2 AR3 AR4 MA1 MA2 MA3 MA4 d D 

Estimate 1.2323 -0.235 NA NA 0.8615 NA NA NA -0.0468 NA 

Se 0.0971 0.0964 NA NA 0.0452 NA NA NA 
  

SARFIMA (2,0,2)(2,0.381,1)12 
 

AR1 AR2 AR3 AR4 MA1 MA2 MA3 MA4 d D 

Estimate 0.8192 -0.922 NA NA 0.5950 -0.9992 NA NA NA 0.381 

Se 0.0423 0.034 NA NA 0.0265 0.0000 NA NA 
  

Table 4.3 presents the residual comparison of the three estimated model. These includes the standard error, AIC and 

BIC of the models. Based on the least standard error, Alkaike Information Criterion, Bayesian Information criterion, 

and absolute log likelihood criterion, the model comparison selects the SARFIMA(2,0,2)(2,0.381,1) as the model with 

the best fit. 

Table 4.3  Model Summary 

Model Standard Error AIC BIC -loglikelihood 

SARIMA(2,2,1)(2,1,2)12 (3) 675.32 (3) 1442.63 (3) 1473.57 (3) -714.32 

http://www.ijbst.fuotuoke.edu.ng/
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ARFIMA(2,-0.0468,1) (2) 198.40 (2) 1248.10 (2) 1268.83 (2)-618.048 

SARFIMA(2,0,2)(2,0.381,1)12 (1) 118.33 (1) 1218.4 (1) 1242.59 (1) -602.201 

R version 3.5.3 

 

The best model SARFIMA(2,0,2)(2,0.381,1)12s was 

finally used to make a forecast of the temperature from 

2019 to 2023, and the forecast as shown in Figure 4.5 

suggests that the temperature is expected to decline 

slowly in the next five years. The residual diagnostic 

was further conducted using the normal QQplot and 

the histogram of the residual. Both plots show that the 

residuals follow a normal distribution. 

 
Figure 4.5 Prediction plot of the SARIMA(2,0,2)(2,0.381,1)12 
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Figure 4.5 Residual Diagnostics plot for Normality 

 

Conclusion 

In this study, we considered a monthly average global 

temperature from the period of 2000 through 2018. 

The ACF plot showed a very slow decay, suggesting a 

long memory and the presence of trend and seasonal 

components in the time series.  

Based on the properties of the series, we compared the 

estimates of three models: Sarima (2,2,1)(2,1,2)12, 

ARFIMA(2,-0.0467,1) and 

SARFIMA(2,0,2)(1,0.381,1)12. The results indicate 

that the SARFIMA model performed better and best 

fits the temperature series. The comparison based on 

the least standard error, AIC, BIC and negative log 

likelihood all chose SARFIMA (2,0,2)(2,0.381,1)12 as 

a better model. Finally, the Normal QQ plot showed 

that the residual of the fit is normally distributed. 

 The best model SARFIMA (2,0,2)(2,0.381,1)12 was 

finally used to make a forecast of the temperature from 

2019 to 2023, and the forecast as shown in Figure 4.5 

suggests that the global temperature is expected to 

decline slowly in the next five years. 
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