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Introduction 

Monosodium glutamate (MSG), the sodium salt of 

the non-essential amino acid glutamic acid, is one 

of the most widely used food additives globally, 

prized for its ability to impart a savoury "umami" 

flavor. Despite its classification as 'generally 

recognized as safe' (GRAS) by regulatory bodies, 

extensive consumption of MSG has been linked to 

a variety of adverse health effects, with a growing 

body of evidence pointing towards its potential for 

neurotoxicity (Bellisle, 2018). Several 

investigations have reported that the mechanism 

of MSG neurotoxicity to involves excitotoxicity, 

uncontrolled activation of glutamate receptors 

leading to accumulation of calcium ions in the 

neuronal cells, oxidative stress triggered by 

calcium overload, and mitochondrial dysfunction. 

These processes overwhelm the brain’s 

antioxidant status, leading to redox imbalance 

(Onaolapo et al., 2011). Examples of the 

antioxidant defence system include glutathione 

(GSH), superoxide dismutase (SOD), and catalase 

(CAT). They act by scavenging reactive oxygen  

 

species (ROS) and reactive nitrogen species 

(RNS), thereby preventing them from damaging 

neuronal cellular components (Hajimorad et al., 

2018). Thus, in conditions where these 

antioxidants are depleted, the ROS and RNS can 

react with cellular components, causing damage. 

Lipid peroxidation is one of the major processes 

involved in oxidative stress, and it is evaluated by 

measuring the concentration of malondialdehyde 

(MDA) generated (Brady et al., 2015; Halliwell & 

Gutteridge, 2015; Srinivan et al., 2015). The redox 

imbalance in the neuronal cells has been 

implicated in the dysregulation of 

neurotransmitter systems involving acetylcholine 

and dopamine (Zhou & Danbolt, 2014). 

Acetylcholinesterase (AChE) is a 

neurotransmitter enzyme that degrades 

acetylcholine after it has been released from the 

synaptic cell. Under oxidative stress, the activity 

of AChE is altered, causing neuroinflammation 

and neuronal cell death (El-Bakli et al., 2018; 

Sayed et al., 2017). Red palm oil (RPO) is obtained 

from Elaeis guineensis fruit. Red palm oil is 
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 Abstract: Monosodium glutamate (MSG), a widely used flavor enhancer, has been implicated in 

neurotoxicity, primarily through mechanisms of excitotoxicity and oxidative stress. Elaeis guineensis (red 

palm oil) is recognized for its high concentration of natural antioxidants, such as tocotrienols and 

carotenoids, which have known neuroprotective potential. This study aimed to evaluate the ability of 

Elaeis guineensis fruit oil to protect against the adverse neurobiochemical changes induced by chronic oral 

administration of MSG in male Wistar rats. Twenty-four male Wistar rats were divided into four groups 

(n=6): control, MSG only (3 g/kg), Elaeis guineensis oil (5 ml/kg) + MSG, and Elaeis guineensis oil only. 

After 21 days of oral administration, brain homogenates were prepared and assayed for levels of glutathione 

(GSH), malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), acetylcholinesterase 

(AChE), and nitric oxide (NO). Compared to the control group, rats treated with MSG alone showed a 

significant (p<0.05) depletion of brain GSH, CAT, and SOD. Concurrently, there was a significant increase 

in the levels of MDA, AChE activity, and NO concentration, indicating severe oxidative stress and 

neurochemical imbalance. Co-administration of E. guineensis fruit oil with MSG significantly counteracted 

these changes, restoring all measured parameters towards the levels observed in the control group. Elaeis 

guineensis fruit oil exhibits significant neuroprotective activity against MSG-induced neurotoxicity. Its 

ability to normalize markers of oxidative stress and cholinergic function suggests its high antioxidant 

content is effective in mitigating excitotoxic damage, highlighting its potential as a functional food 

supplement against neurotoxic insults. 
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abundant in Nigeria and other parts of West 

Africa. It is a major ingredient in a traditional 

food delicacy that adds flavour to soup (Adekunle 

et al., 2020). RPO is a rich source of tocopherols 

and tocotrienols, antioxidant compounds that 

have been reported to improve brain health and 

function (Sen et al., 2007; Srivastava & Gupta, 

2011). Another class of antioxidant compounds 

isolated from RPO is carotenoids such as lycopene, 

beta-carotene, lutein, alpha-carotene, and 

zeaxanthin. All these compounds have been 

reported to possess antioxidant and anti-

inflammatory properties and their potential as an 

effective agent for protecting brain damage or 

slowing brain ageing processes (Hassim et al., 

2020; Ricci et al., 2015). Given the central role of 

oxidative stress in MSG-induced neurotoxicity, 

the powerful antioxidant profile of Elaeis 

guineensis oil suggests it may serve as an effective 

neuroprotective agent against such damage. 

This study, therefore, investigates the potential of 

Elaeis guineensis fruit oil to ameliorate the adverse 

neurobiochemical changes induced by oral 

administration of monosodium glutamate in male 

Wistar rats. 
 

Materials and Methods 

Chemicals and Reagents 

Monosodium glutamate (MSG) of food-grade 

quality was purchased from a commercial 

supplier. Crude, unrefined Elaeis guineensis fruit 

oil was sourced locally in Nigeria. All other 

chemicals used for the biochemical analyses were 

of analytical grade 
 

Experimental Animals: Twenty-four (24) male 

Wistar rats, weighing between 150-180g, were 

obtained and used for the study. The animals were 

housed under standard laboratory conditions (25 

± 2°C, 12-hour light/dark cycle) and were allowed 

free access to standard chow and clean drinking 

water ad libitum.They underwent a two-week 

acclimatization period before the experiment 

began. The study was conducted in strict 

adherence to ethical guidelines for the use and care 

of laboratory animals 
 

Experimental Design: The rats were randomly 

allocated into four experimental groups, with six 

animals in each group. The administration of 

substances was carried out orally for 21 days 

(modified method of Ajuwon et al., 2022). 

Group 1 (Control): Received daily oral 

administration of distilled water. 

Group 2 (MSG only): Received a daily oral dose of 

monosodium glutamate (3g/kg body weight) 

according to the method of Razali  et al., 2021. 

Group 3 (E. guineensis + MSG): Received a daily 

oral dose of Elaeis guineensis fruit oil (5 ml/kg 

body weight) one hour before the daily 

administration of monosodium glutamate (3g/kg 

body weight). 

Group 4 (E. guineensis only): Received only a 

daily oral dose of Elaeis guineensis fruit oil (5 

ml/kg body weight) 
 

Sample Collection and Preparation: Following the 

21-day treatment period, animals were fasted 

overnight and then humanely sacrificed. The 

brains were immediately harvested, rinsed in ice-

cold saline to wash off blood, and blotted dry. 

Each brain was weighed and homogenized in a 

cold phosphate buffer (pH 7.4). The homogenate 

was then centrifuged (e.g., at 10,000 g for 15 

minutes at 4°C) to obtain a clear supernatant, 

which was carefully collected and stored frozen (-

20°C) for subsequent biochemical assays. 
 

Biochemical Assays: The brain supernatant was 

used to determine the concentration or activity of 

the following biochemical markers using 

established standard laboratory protocols: 
 

The brain malondialdehyde (MDA) : 

concentrations (index of lipid peroxidation) was 

spectrophotometrically evaluated according to 

the method of Draper and Hadley (1990). Catalase 

(CAT) activity was assayed by the decomposition 

of hydrogen peroxide according to the method of 

Claiborne (1984). Superoxide dismutase (SOD) 

activity was determined by the method of Misra 

and Fridovich (1972).  Acetylcholinesterase 

(AChE) activity in the brain homogenates was 

measured by the method of Lombardi et al. (1999). 

Nitrite assay was done using Griess reagent with 

some modifications of the method of Green et al. 

(1982). The total protein levels were measured by 

an enzymatic colourimetric kit (Wako Chemicals 

USA, Inc.). 
 

Statistical Analysis: All data were expressed as the 

mean ± standard deviation (SD). The results were 

analyzed using a one-way analysis of variance 

(ANOVA), and differences between group means 

were evaluated using a suitable post-hoc test (e.g., 

Tukey's HSD). A probability value of p<0.05 was 

considered to be statistically significant. 
 

Results 

GSH is a major non-enzymatic antioxidant that 

plays a central role in protecting cells from ROS. 

It directly neutralizes free radicals and helps 

recycle other antioxidants. Depletion of GSH is a 

classic hallmark of cellular toxicity. The MSG 

group showed depleted GSH levels (8.56±0.64 

mg/L) compared to the control group (9.87±0.24), 

confirming that the body's GSH reserves were 

being used up to fight the toxic insult. EGFO 

treatment dose-dependently restored GSH levels, 
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with the 4 ml/kg dose bringing the level (9.55) very 

close to that of the control group. EGFO helps 

preserve the body's critical glutathione pool, 

which is essential for maintaining overall cellular 

health and detoxification. This effect is likely due 

to the oil's own antioxidants handling the stress, 

thus reducing the demand on GSH. 

 

 

 
Figure 1: Effect of E. guineensis fruit oil on glutathione concentration in the brain of male wistar rats orally 

administered monosodium glutamate (MSG). Results are expressed as mean±standard deviation (SD) for 5 

animals. *P<0.05 significantly different (Control vs MSG); # P<0.05 significantly different (MSG vs 

treatment). MSG= Monosodium glutamate; EGFO= E. guineensis fruit oil 

 

 
Figure 2: Effect of E. guineensis fruit oil on malondialdehyde concentration in the brain of male Wistar rats 

orally administered monosodium glutamate (MSG). Results are expressed as mean±standard deviation (SD) 

for 5 animals. MSG= Monosodium glutamate; EGFO= E. guineensis fruit oil 

 

MDA is the most commonly used biomarker for 

lipid peroxidation. It is a compound formed when 

reactive oxygen species (ROS) attack and damage 

the fatty acids in cell membranes. Therefore, a 

higher level of MDA indicates greater oxidative 

stress and cellular membrane damage. The MSG 

group (0.87±0.01 mg/L) showed a slight but 

notable increase in MDA compared to the control 

group (0.80±0.02 mg/L). This confirms that MSG 

administration induced oxidative stress leading to 

damage of neuronal membranes. Pretreatment 

with both 2 ml/kg and 4 ml/kg of EGFO reduced 

MDA levels (0.78 and 0.80, respectively), 

effectively bringing them back to or even below 
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the normal control level. EGFO demonstrates a 

potent ability to protect cell membranes from the 

lipid damage caused by MSG, likely due to the 

direct free-radical scavenging action of its 

antioxidant components (tocotrienols and 

carotenoids). 

 

 
Figure 3: Effect of E. guineensis fruit oil on catalase activity in the brain of male Wistar rats orally 

administered monosodium glutamate (MSG). Results are expressed as mean±standard deviation (SD) for 5 

animals. *P<0.05 significantly different (Control vs MSG); # P<0.05 significantly different (MSG vs 

treatment). MSG= Monosodium glutamate; EGFO= E. guineensis fruit oil 
 

Catalase is a critical antioxidant enzyme located 

in cells. Its primary role is to break down harmful 

hydrogen peroxide (H2O2) into harmless water and 

oxygen. A decrease in CAT activity signifies that 

the enzyme is being consumed to combat high 

levels of oxidative stress. The MSG group showed 

a drastic reduction in CAT activity (0.50±0.00 

U/mg protein) compared to the control 

(0.83±0.06). This sharp decline is a strong 

indicator of severe oxidative stress overwhelming 

the cell's defences. Pretreatment with EGFO led to 

a dose-dependent recovery. The 2 ml/kg dose 

provided partial restoration (0.62), while the 4 

ml/kg dose completely restored CAT activity to 

the control level (0.83). The results show that 

EGFO "spares" the body's natural catalase 

enzyme by reducing the overall oxidative load, 

allowing its levels to return to normal. The 

complete restoration at the higher dose is a 

powerful indicator of EGFO's efficacy. 

 

 

 

 
Figure 4: Effect of E. guineensis fruit oil on superoxide dismutase activity in the brain of male Wistar rats 

orally administered monosodium glutamate (MSG). Results are expressed as mean±standard deviation (SD) 

for 5 animals. *P<0.05 significantly different (Control vs MSG); # P<0.05 significantly different (MSG vs 

treatment). MSG= Monosodium glutamate; EGFO= E. guineensis fruit oil 

 

Similar to catalase, SOD is considered the first line 

of enzymatic antioxidant defense. It neutralizes 

the highly reactive superoxide radical (O2−), 

converting it into hydrogen peroxide, which is 

then handled by catalase. A decrease in SOD 

activity is a primary sign of significant oxidative 

insult. MSG caused a massive drop in SOD 

activity, from 80.72±2.98 U/mg in the control 
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group to just 30.31±3.05 in the MSG group. This 

indicates that the primary antioxidant defense 

was severely compromised. Both doses of EGFO 

led to a substantial recovery in SOD activity 

(63.96 and 67.97). While not a full return to 

control levels, this represents a significant 

preservation of this crucial enzyme's function. 

EGFO provides robust protection to the primary 

antioxidant defense system, mitigating the 

damage from the flood of superoxide radicals 

generated by MSG toxicity. 

 

 

 
Figure 5: Effect of E. guineensis fruit oil on acetylcholinesterase activity in the brain of male Wistar rats 

orally administered monosodium glutamate (MSG). Results are expressed as mean±standard deviation (SD) 

for 5 animals. *P<0.05 significantly different (Control vs MSG); # P<0.05 significantly different (MSG vs 

treatment). MSG= Monosodium glutamate; EGFO= E. guineensis fruit oil 
 

AChE is a vital enzyme in the nervous system 

responsible for breaking down the 

neurotransmitter acetylcholine. Proper AChE 

function is essential for regulating nerve impulses 

and is crucial for learning and memory. Inhibition 

or alteration of AChE activity is a direct marker 

of neurotoxicity. MSG administration caused a 

severe reduction in AChE activity (from 0.79±0.17 

nmol/mL to 0.37±0.02), indicating significant 

disruption of cholinergic nerve function. This 

damage is likely a downstream effect of the 

oxidative stress on neurons. Remarkably, both 

doses of EGFO completely restored AChE activity 

(0.87 and 0.81), bringing it back to normal, 

healthy levels. This is a key finding. EGFO not 

only acts as a general antioxidant but also 

demonstrates a potent neuroprotective effect, 

preserving the functional integrity of the 

cholinergic system against MSG-induced damage. 

 

 
Figure 6: Effect of E. guineensis fruit oil on Nitric oxide concentration in the brain of male Wistar rats orally 

administered monosodium glutamate (MSG). Results are expressed as mean±standard deviation (SD) for 5 

animals. *P<0.05 significantly different (Control vs MSG); # P<0.05 significantly different (MSG vs 

treatment). MSG= Monosodium glutamate; EGFO= E. guineensis fruit oil. 

 

NO is a versatile signalling molecule, but in excess, 

it contributes to nitrosative stress and 

inflammation. It can react with superoxide 

radicals to form peroxynitrite, an extremely 
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potent and destructive oxidant that damages 

DNA, proteins, and lipids. MSG caused a dramatic 

increase in NO, more than doubling it from 

12.02±3.88 µmol/L to 25.44±2.46. This indicates a 

severe inflammatory and nitrosative stress 

response in the brain tissue. EGFO was extremely 

effective at quenching this response. The 4 ml/kg 

dose was particularly potent, reducing NO levels 

to 9.89±1.16, a level even lower than the control 

group. EGFO exhibits strong anti-inflammatory 

and anti-nitrosative properties. Its ability to 

almost completely abolish the pathological 

increase in NO demonstrates its effectiveness in 

controlling the inflammatory cascade triggered by 

MSG. 

 

Discussion 

The results of this study are highly consistent with 

the established body of scientific literature on 

monosodium glutamate (MSG) neurotoxicity and 

the protective effects of antioxidant-rich natural 

products. The data shows that MSG 

administration decreased levels of SOD, CAT, and 

GSH while increasing MDA and NO aligns 

perfectly with numerous studies. MSG is known to 

act as an excitotoxin. Its primary component, 

glutamate, is a major excitatory 

neurotransmitter. In excessive amounts, it 

overstimulates glutamate receptors (like the 

NMDA receptor), leading to a massive influx of 

calcium ions (Ca2+) into neurons. This process, 

known as excitotoxicity, triggers a cascade of 

damaging events, including the overproduction of 

reactive oxygen species (ROS) and reactive 

nitrogen species (RNS) (Goncalves-Ribeiro et al., 

2019; Haroon et al., 2017; Zhou & Danbolt, 2014). 

The body's primary defense against this surge in 

ROS/RNS is the antioxidant enzymes superoxide 

dismutase (SOD) and catalase (CAT), along with 

the non-enzymatic antioxidant glutathione (GSH) 

(Halliwell & Gutteridge, 2015). As observed in this 

finding and confirmed by other investigations 

(Onyema et al., 2006; Singh & Ahluwalia, 2003), 

the system becomes overwhelmed, and the levels 

of these protective agents are significantly 

depleted as they are consumed in an attempt to 

neutralize the free radicals. The increase in 

Malondialdehyde (MDA) is a good indicator of 

lipid peroxidation, where ROS attack the lipids in 

cell membranes, causing cellular damage 

(Onufrovych et al., 2024). The significant increase 

in Nitric Oxide (NO) also corroborates findings 

that excitotoxicity activates neuronal nitric oxide 

synthase (nNOS), producing excess NO which can 

react with superoxide radicals to form the highly 

destructive peroxynitrite anion (ONOO−) (Iova et 

al., 2023). The drastic reduction in 

acetylcholinesterase (AChE) activity is a key 

finding that links oxidative stress to functional 

neurotoxicity (Aroniadou-Anderjaska et al., 2023). 

Other studies have shown that oxidative damage 

to neuronal membranes and the AChE enzyme 

itself can impair its function (Ilesanmi & Ikpesu, 

2020; Ilesanmi et al., 2020). This disruption of the 

cholinergic system is implicated in cognitive 

deficits, further supporting the neurotoxic effect 

of MSG. The most significant finding in this 

experiment is the ability of EGFO to reverse these 

toxic effects. This is strongly supported by our 

understanding of the oil's biochemical 

composition. Red palm oil (E. guineensis) is one of 

the richest natural sources of tocotrienols (a 

potent form of Vitamin E) and carotenoids 

(including beta-carotene) (Sen et al., 2007; 

Srivastava and Gupta, 2011). Tocotrienols are 

known to be more potent antioxidants than the 

more common tocopherols. They are exceptionally 

effective at integrating into cell membranes and 

neutralizing the lipid peroxidation chain reaction, 

which explains the normalization of MDA levels in 

the EGFO-treated groups (Figure 2). Carotenoids 

are also powerful free-radical scavengers (Hassim 

et al., 2020; Ricci et al., 2015). The treatment with 

EGFO can directly quench the ROS and RNS 

generated by MSG. This reduces the burden on the 

body's antioxidant systems. As a result, the levels 

of SOD, CAT, and GSH are "spared" from 

depletion and can be restored to normal, which is 

precisely what the data revealed. This protective 

mechanism is not unique to EGFO but is a 

common theme in studies using other antioxidant-

rich substances. Research on ascorbic acid, 

curcumin, and resveratrol has shown similar 

protective effects against MSG-induced 

neurotoxicity by bolstering antioxidant defenses 

and reducing markers of oxidative damage 

(Danisman et al., 2023; Khalil et al., 2016; Onyeso 

et al., 2025). The results for EGFO place it firmly 

within this category of potent, natural 

neuroprotective agents. The observation that a 

higher dose of EGFO was more effective than 

lower dose is important. This dose-dependent 

relationship strengthens the conclusion that the 

components within EGFO are directly responsible 

for the protective effect. 

In conclusion, this investigation confirms the 

oxidative and neurotoxic effects of monosodium 

glutamate and the potential of E. guineensis fruit 

oil (palm oil) to prevent and reverse these toxic 

effects.  Futher research can be conducted to 

investigate the long-term effects of E. guineensis fruit 

oil and its potential interactions with other 

neurotoxicants. Also, a detailed investigation into the 
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specific molecular mechanisms by which the active 

compounds in E. guineensis fruit oil exert 

neuroprotective effects may help clarify their role in 

mitigating oxidative damage 
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