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Introduction  

According to (Eckert and Drake, 1972) mass flux 

created by a temperature gradient is known as the 

soret or thermal–diffusion effect whereas the energy 

flux caused by a composition gradient is called the 

Dufour or diffusion–thermo effect. The thermal–

diffusion (soret) effect, for instance, has been 

utilized for isotope separation, and in a mixture of 

gases with very high molecular weight (H2, He) and 

of medium molecular weight (N2, air). The 

diffusion–thermo (Dufour) effect was found to be of 

a considerable magnitude such that it cannot be 

ignored (Eckert and Drake, 1972).  

Postelnicu (2004) has considered both Soret and 

Dufour effects on the natural convection about a 

vertical surface embedded in a saturated medium 

subjected to a magnetic field. Vaidyanathan et 

al.(1997) studied Ferro thermohaline convection in 

which a horizontal layer of an incompressible 

ferromagnetic fluid of thickness d, heated from 

below and salted from above in the presence of a 

transverse magnetic field was considered.  

Convective instability of a ferromagnetic fluid for a 

fluid layer heated from below in the presence of a 

uniform vertical magnetic field has been considered 

by Finlayson (1970). He explained the concept of 

thermo-mechanical interaction ferromagnetic 

fluids. From the wide range of applications of 

ferromagnetic fluid to instrumentation, lubrication, 

printing, vacuum technology, vibration damping, 

metals recovery, acoustics and medicine. Hill 

(2005) investigated the problem of double-diffusive 

convection in a porous medium with a 

concentration-based internal heat source using 

linear and nonlinear stability analyses. He 

employed Darcy’s Law and Boussinesq’s 

approximation with the equation of state taken to be 

linear to temperature and concentration.  

Kaufman (1994) focused on convective instabilities 

of through flow in packed beds with internal heat 

sources where a packed bed is heated with internal 

heat sources. Bdzil and Frisch (1971) discussed the 

effect of suction on heat transfer with internal 

generation or absorption in a viscous flow at a 

stagnation point.         

Sharma and Rana (2002) considered the 

thermosolutal instability of Walters’ (model B’) 

elastico-fluid in a porous medium in the presence of 

uniform rotation, suspended particles and variable 

gravity field. There has been some work conducted 

on the exploration of this system namely 

Krishnamurti (1997) and Straughan (2002) for a 

viscous fluid and Hill (2003) for a fluid-saturated 

porous medium. Each of these bodies of work 

defines the state equation to be linear in 

temperature, with the effect of concentration on 

density assumed to be negligible. Hill (2005) 

explored the use of a double-diffusive convection 

model in a porous, with fixed boundary conditions 

employed. In addition to establishing the double-

diffusive convection model, he developed a 

complementary energy theory. The energy method 

has been employed much success in double-
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diffusive flows, with examples including Carr 

(2003), Guo and Kaloni (1995) and Mulone and 

Rionero (1997). Bahadori and Rashidi (2012), 

investigated analytically thermo-diffusion and 

diffusion-thermo effects on heat and mass transfer 

in a two-layered cavity.  

Taslim and Nasurawa (1986) and Malashetty (1993) 

used linear stability analysis to investigate the onset 

of convection in a double-diffusive flow. The work 

was later extended by Nield and Beijan (2006) to 

consider the effects of inclined temperature and 

solutal gradients. It was observed that both the 

thermal and solutal Rayleigh numbers contributed 

significantly to the onset of convective instability.  

Shivaiah and Rao (2011) analysed the effects of 

Soret Dufour and thermal radiation on unsteady 

magneto-hydrodynamic free convection flow past 

an infinite vertical porous plate in the presence of a 

chemical reaction. In all these investigations and 

studies, the Dufour and Soret effects on the onset of 

thermosolutal instability in a rotating porous layer 

has not been treated and constitute an important 

addition to the area of porous media convection 

studies. 

 

 Mathematical Formulation 

The lower and upper surfaces are maintained at 

temperatures 0TandT    and soluted mass 

concentrations 0CandC  respectively. The whole 

system is assumed to be rotating with angular velocity 

),0,0( = along the vertical axis which is taken 

as the z-axis. The fluid is assumed to be Newtonian 

and the porous medium obeys Boussinesq’s 

approximation and also the flow is governed by 

Darcy’s law. Further, it is assumed that the fluid 

density , is linearly dependent on the temperature T 

and concentration C according to Lawson and Yang 

(1973), and Hill (2005).Hence the density equation of 

state is taken as: 

 

 ( ) ( ) ( ) 000 1 CCTTCT cT −+−−=                (1) 

where, 0 is the reference density of the rotating 

fluid at temperatures 0TT =  and mass fractions 

0CC = , 0T  and 0C  are reference temperature 

and concentration respectively, cT and   are 

thermal expansivities for temperature and solute 

concentrations respectively. We consider the porous 

layer to be arbitrarily close to the axis of rotation 

and hence we assume that the gravity buoyancy is 

dominant and centrifugal buoyancy is negligible. 

 

 Mathematical Equations 

The mathematical equations governing the motion 

of the fluid-saturated by the porous medium, 

following Boussinesq’s approximation for the 

above model according to Chandrasekhar (1981) 

and Nield and Bejan (2006) are: 

 

Continuity Equation 

0. =v


                                 (2) 

Momentum Equation  

02),( =+++



 

kkgCTv
k

P o                        (3)  

Energy Equation 
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t
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+=+


 
          

 Concentration Transport Equation  

TDCDCv
t

c
CTm

+=+





→
22


                       (5) 

Using equation (1) into (2) - (4), the governing equations become  

0. =v


                           (6) 

( ) ( )


−−++ kTTgov
K

zgP To 0




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)8(
)()(

22 C
Cp

D
T

C

k
T

t

T
A

f

TC

fP

m +=+


 
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
                          (9) 

where,  

fP

mP

C

C
A

)(

)(

0

0




=            

We solve equations (6 – 9) subject to the following boundary conditions: 

 =w   0,      
,1TT =     1CC =      at 

2

h
z −=  

0=w  ,      ,2TT =  2CC =     at +=z
2

h
                                                      (10)     

2.2. Non-dimensionalization 

Equations (6 –9) together with equation (10) are written in dimensionless form as  

0. =


                                                                                       (11) 


)

++−+ kTCRTRp aCT  =0                                                                               (12)                                                      

CDTT
t

T
f

22. +=+


 
                                                           (13) 

TS
Le

C
t

c
b r

221
. +=+



 
                                                        (14) 

Subject to the boundary condition  

0=w , ,
2

1
=T  

2

1
=c   on 

2

1
=z                                                     (15)           

In equation (11) – (14) and the boundary condition (15) the following dimensionless variables were introduced.  

),,,(
1

),,,( zyx
h

zyx =           ,
2Ah

t
t m


=


            

m

vh





=




 

 

 

  

m

T

T

TThkg
R



 )( 210 −
= = Thermal Rayleigh number  

m

c

C

CCkhg
R



 )( 210 −
=  = Solutal Rayleigh number 



 k
Ta

02



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21

0
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b = 
( )
( )21

21
,

CC

TTD
S

A m

CT

r
−

−
=




= Soret number  

m

m

D


= Le    = Lewis number 

 

Method of Analysis 
 

Steady State 

We seek an initial steady state solutions for which .00 →



=

→

t
andV   

Putting into equations (11) to (14) and the boundary conditions (15) and setting ,BTT =   ,BCC =  where the 

subscripts represent basic state, we obtain 

BcBT
B CRTR

dz

dP
−=                (16)                                                  

0
2

2

2

2

=+
dz

Cd
D

dz

Td B
f

B
                                                                                     (17) 

2

2

2

2

dz

Td
SrLe

dz

Cd BB +  =0                                                                  (18) 

Subject to the conditions  

BT   =                                   

Putting equation (18) into (17), we have    











−+

2

2

2

2

dz

Td
SrLeD

dz

Td B
f

B
    = 0                            (19)                            

where C1 and C2 are constants of integration. Applying condition (19),  

BT  = -z                                                                                          (20) 

Substituting (20) into (18), we have  

2

2

dz

cd B
    = 0 

From this we obtain  

zCB −=                                                                                                      (21) 

Therefore,  

dzzRzRp CTB )( +−=  ,  

Hence, 
2

)( 2zRR
p TC

B

−
=                                                                        (22) 

 

 Linearization and Perturbation Equation  

To study the stability of the steady-state solution, we assume a small disturbance around the basic solution 

(Chandrasekhar, 1981, Drazin and Reid, 2004); 

 

+= BTT  

2

1

2

1
,

2

1
== zonCB

VV


+= 0
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+= BCC  

pPP B +=                                                                                                            (23)                                    

where ,BT ,         φ << BC ,          BP  , 

Substituting (3.23) into equation (3.11), (3.14) and the boundary conditions (15), we obtain  

0. =
→→

v                                 (24) 

vkTvkRRP aCT


−−−= ˆ)(                                                                 (25) 

wD
t

f ++=





 22


                                            (26) 

wS
Let

b r +







+=



 →→


 221

                                               (27) 

Subject to the boundary condition   

W = θ = φ = 0       on,   z= ±
2

1
                                                                       (28) 

Next, eliminating the pressure perturbation by operating double curl on (25) using the continuity equation (24), 

and taking only the z-component yields 

T1 −=




z

w
                                               (29) 

z
TRR ahChT




−−=


 222

                              (30) 

where 

2

2

2

2
2

yx
h




+




= ,   is the Laplacian in the horizontal plane  

y

u

x

v




−




=

2
 ,   is the z – component of the vorticity 

 

Normal Mode Analysis 

Next, we examine the stability of small perturbations from the inactive state of the situation described by (12)–

(15). The analysis is made in terms of two–dimensional periodic waves of assigned wave numbers. Here, we 

assume the perturbed solution to have a wavelike disturbance of the form  

( ) )( y
y

x
x kkiht

ezWw
++

=      

 ( ) ( )y
y

x
x kkiht

ez
++

= ,      

 ( ) )( y
y

x
x kkiht

ezzZ
++

=  

)(
)(

y
y

x
x kkiht

ez
++

=                                                                              (31) 

where xk  and yk  are wave numbers in the x and y directions respectively and h is a constant, which can be 

complex,  

 iihh = , 

Substituting equation (31) into (26), (27), (29) and (30), we obtain  

Ta z
dz

dw
−=                                                                                    (32)  
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DzTkRkRwkD acT −−=−  2222 )(                                                     (33) 

wkDDhkD f +−+−− )()( 2222
              (34) 

0)()( 2222 =+−+−− LewkDSLebhkD r                                           (35) 

 where,                                                                         ,,, 2

2

2

2

2

dz

d
Dk

yx
h

t
==




+




=





 

Equation (32) can be written in the form  

zDwTa −=                                                                                                 (36) 

So that 

     -                                                                                         (37)                                                                          

Substituting (3.37) into (3.33), we get  

   wDTkRkRwkD aCT

222222 )()( −−=−                                               (38)      

To proceed with the analysis we seek solutions of the form  

,sin),,(),,( 00 znwO =                                                                        (39) 

Where n is a positive integer and where 000 ,, wand are in general complex. Substituting equation (39) 

into (34), (35) and (38), yield: 

0)()( 0

222

0

222 =−++++ wknDkn f                            (40)                           

( ) ( ) 000

222

02

22 =−++++ LewLebknknLeSr                                      (41)  

0)( 0

222222

0

22 =+++− wknTnkRkR aCT                                                 (42)                      

For an idealized fluid layer with free boundaries for which n=1, we can rewrite equations (40) - (42) in matrix 

form as  











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



=

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





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
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0

0
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0

0

2222 wTJkRkR

LeLebJJLeS

JDJ

aCT

r

f




                                              (43) 

where 
22 kJ +=   

The solvability of the system (43) requires that 

0

1

2222

=

+−

−+

−+

aCT

r

f

TJkRkR

LeLebJJLeS

JDJ



              

That is, 

( ) ( ) 22 kRLeJLeJLeSrkRJLeDbLeJ CTf −−+−+  

                       (44)                 

 

By rearranging equation (44), we obtain an expression for the characteristic value of the thermal Rayleigh 

number as:                                                                                

222222

2

2
2 ,, yx kkkkD

z
D +=−=




−=

DzwDTa +=2

( )( ) 022222 =−+++++ rfa SLeDJJbLebLeJJTJ 
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Onset of Stationary and Oscillatory Convection 
 

Having established the thermal Rayleigh number, we proceed to study the stationary and oscillatory convection.  

 

 Stationary convention  

For stationary convention, the marginal state is characterized by 0= , and setting )(SRR TT =  in equation 

(45), the Rayleigh number becomes: 
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1

1

1

1

2

22
                               (46) 

Next, we seek for the critical wave number, Ck , for the onset of stationary instability in the system by setting 

Ckk = in equation (46) following Chandrasekhar (1961). 

 Simplifying gives: 

( )
0

2
=





k

sRT , which yields the critical wave number: 

                          (47) 

substituting equation (47) into equation (46) gives the critical 

Rayleigh  

number for stationary convections 
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Oscillatory Convection 

For marginal stability, set 0=r  so that the 

oscillatory frequency contains only the imaginary 

part where wi = . Substituting iw= into  

 

equation (45), we obtain the oscillatory thermal 

Rayleigh number. Substituting iw= , into 

equation (45), yields the oscillatory thermal 

Rayleigh number 
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Simplifying equation (50) and separating the real and imaginary parts yields  

0,1 2222
+= kTakC 
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Equating equation (52) to zero and simplifying gives 
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Results and Discussion 

This article showed an analytical solution to the 

formulated problem and numerical simulation done 

using Mathematica version 9. The simulations are 

shown below for various values of the parameters

. 

 

 
 

Figure 4.1  : The Variation of Rayleigh numbers (RT) with wave number (k)
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Figure 4.2 : Values of Rayleigh number (RT)  and wave numbers (k) for various values 

of rotation   Ta
2
 for the onset of stationary convection
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Figure 4.3   : The Variation of Rayleigh number (RT) with Solutal Rayleigh number RC)
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Fig.4.1 represents the plot of Rayleigh number ( TR ), for the onset of stationary convection versus the wave 

number (k). Considering equation (47), that is,  

 

                                                       

 

In the absence of Rotation (
2

aT ), Lewis number ( )Le , Solutal Raleigh number ( )CR , Dufour parameter ( )
fD

and Soret parameter ( )rS , that is, 
2

aT = Le = cR =
fD = rS = 0, equation (47) becomes: =ck  

( )sRT =
24   

                                  

This is consistent with the result previously reported 

by Lambardo et al. (2003), Isreal – Cookey and 

Omubo Pepple (2011). When the Rayleigh number 

is less than or reaches a given value, the 

disturbances become stable and when they exceed 

the threshold the disturbance become unstable (Hill, 

2005 and Lambardo et al. (2003) ) .Fig.4.2 shows 

the variation of Rayleigh number ( TR ) number  

with the wave number (k) for fixed values of Lewis 

number ( )Le , Solutal Rayleigh number ( )CR , 

Dufour parameter ( )
fD  and Soret parameter ( )rS   

for various values of Rotation(
2

aT ). Fig.4.3 shows 

variation of Rayleigh number ( TR ) with Solutal 

Rayleigh number ( )CR  for fixed values of Rotation 

(
2

aT ), Lewis number ( )Le , Dufour parameter 

( )
fD and wave number (k) for various values of  

Soret ( )rS . Fig4.4 shows the variation of Rayleigh 

number ( TR ) with Solutal Raleigh number ( )CR  

for fixed values of Rotation (
2

aT ), Lewis number 

(Le), Soret parameter ( )rS and wave number (k) 

and for various values of Dufour ( )
fD .  The results 

show that increase in Rotation (
2

aT ) and Dufour 

( )
fD  can cause an increment in the Rayleigh 

number for stationary convection. This means that 

Rotation (
2

aT ) and Dufour ( )
fD  delay the onset 

of instability in the system while an increment in 

Soret causes a decrease in the Rayleigh number for 

stationary convection. This means that an increase 

in Soret parameter hastens the onset of instability in 

Figure 4.4   : Values of Rayleigh number (RT) for various values of Solutal Rayleigh number (RC)
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the system. Lambardo et al. (2003) and Isreal-

Cookey (2006). 

  

Conclusion 

The study was carried out to investigate the Dufour 

and Soret effects on the onset of thermosolutal 

instability in a rotating porous layer by representing 

the problem mathematically. Darcy’s law and 

stability analysis were used for the investigation. 

The analytical solutions were analyzed and 

simulation was done using Wolfram Mathematica, 

focusing on varying the relevant parameters and the 

results were revealed as follows: 

1. When the Rayleigh number was less than or equal 

to the threshold value, the disturbances became 

stable but when they exceeded the threshold the 

disturbance became unstable. 

2. An increase in Rotation (
2

aT ) and Dufour ( )
fD  

can cause an increment in the Rayleigh number for 

stationary convection. 

3. Rotation ( )
2

aT and Dufour parameters ( )
fD  

respectively has a destabilizing effect on the system 

as the Rayleigh number )( TR  increases with an 

increase in Rotation ( )
2

aT  and dufour parameters

( )
fD  for all values of  the wave number (k) and 

Solutal Rayleigh number )( CR . 

4. Increase in Soret parameter )( rS  hastens the 

onset of instability in the system. 

 

Recommendations 

 Natural extensions of the stability analysis include 

considering other boundary conditions at the upper 

and lower surfaces or studying the role of the effects 

of varying values of Dufour, Soret, thermal 

Rayleigh number and inertial parameter. The 

examination of the effects of radiation on a porous 

layer, are also of topical interest and offer additional 

interesting possibilities for further study.  
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