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Introduction 
Forecasts of monthly births can help predict the 
fluctuating trends of a country's population 
distribution, which is also important in estimating the 
increase in population.  The importance of population 
forecasting in the context of national, state, and local 
government budgeting and legislation in medical 
services, security, and infrastructure cannot be 
emphasized (Bravo and Magalhães, 2010). To 
appropriately design programs to reduce mortality 
among kids and fertility, it is also necessary to 
understand the concept of birth rate, especially among 
developing nations experiencing population change 
(Soest & Saha, 2018). Several independent studies have 
found a link between particular periodic birth rates, 
reproductive customs, and the risk of a child dying 
(Asefa et al., 2000).  
Research findings indicate the occurrence of seasonal 
and trend patterns in birth rate data. As a result, 
utilizing models based on time series to forecast birth 
and mortality rates has grown in popularity in the past 
few decades.  A time series is any random variable that 
is observed sequentially throughout time.  Analyzing 
time series data requires analyzing the characteristics of 

the response variable with respect to time as the 
independent variable.  
The time variable is used as a point of reference for 
estimating the target variable for predicting or 
forecasting purposes. Hussein (1993), for example, 
analyzed Egypt's crude birth rate and crude death rate 
from 1992 to 2010 employing the autoregressive 
integrated moving average (ARIMA) model; the study 
used a time series approach to anticipate Egypt's rates 
of births and deaths beyond 2010. Furthermore, 
Adsera  (2006), Abel et al. (2013), Lee (1992), Ahlo 
(2012), Lee and Tuljapurkar (1994), Graham et al. 
(2008), Keilman et al. (2002), Tayman (2007), Kirk 
(1996), Rau (2007), Palloni, and Rafalimanana (1999) 
amongst others have also worked on the application of 
time series models for birth rate and demographic 
forecasting.  
The autoregressive integrated moving average 
(ARIMA) is one of the time series models commonly 
used. The model is also known as the ARIMA (p, d, q) 
model, where p is the autoregressive component, q is 
the moving average component and d represents 
differencing, p,d and q are all integers larger than or 
equal to 1. The ARIMA model is appropriate when the 
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data is stationary. For a stationary series, the mean, 
variance and autocorrelation function remain constant 
throughout time.  
The evaluation of time series models for birth and 
death in Otuoke has received little attention thus, the 
main focus of the present study is to determine a 
suitable ARIMA model for the forecast monthly Birth 

rate in Otuoke, Bayelsa State, Nigeria using the time 
series method developed by Box- Jenkins. 
Materials and Methods  
Autoregressive (AR) Model  
The autoregressive process of order k denoted by AR 
(k) is a time series model given by  

𝑋𝑡 = ∑  

𝑘

𝑖=1

𝜗𝑖𝑋𝑡−𝑖 + 𝜀𝑡 

 

= 𝜗1𝑋𝑡−1 + 𝜗2𝑋𝑡−2 + 𝜗3𝑋𝑡−3 + ⋯ + 𝜗𝑘𝑋𝑡−𝑘  + 𝜀𝑡                                                                    (1) 
Where the  𝜗𝑖𝑠 𝑖 = 1,2,3, … , 𝑘 are the model parameters and 𝜀𝑡  is a sequence of independently and identically 

distributed (iid) random variables with 𝐸(𝜀𝑡) = 0 and 𝑣𝑎𝑟(𝜀𝑡) = 𝜎𝑒
2 

 

Autoregressive models are based on the idea that the current value of the series, can be explained as a linear combination 
of past values, together with a random error in the same series.  
 

Moving Average (MA) Model 

Given that 𝜀𝑡  is a sequence of independently and identically distributed (iid) random variables with 𝐸(𝜀𝑡) = 0 

and 𝑣𝑎𝑟(𝜀𝑡) = 𝜎𝑒
2, then 

 

𝑋𝑡 = ∑  

𝑟

𝑖=1

𝜃𝑖𝜃𝑡−𝑖 = 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + 𝜃3𝜀𝑡−3 + ⋯ + 𝜃𝑟𝜀𝑡−𝑟                  (2) 

 
is the rth order moving average MA(r) model. 
 
Autoregressive Moving Average (ARMA) Model 
Autoregressive Moving Average (ARMA) Model is a mixture of the AR and MA models. Thus, a time series is said to 
follow an autoregressive moving-average process of order k and r, i.e ARMA (k, r), process if:  

𝑋𝑡 = ∑  

𝑘

𝑖=1

𝜗𝑖𝑋𝑡−𝑖 + 𝜀𝑡 + ∑  

𝑟

𝑖=1

𝜃𝑖𝜃𝑡−𝑖 

 

𝑋𝑡 = 𝜗1𝑋𝑡−1 + 𝜗2𝑋𝑡−2 + 𝜗3𝑋𝑡−3 + ⋯ + 𝜗𝑘𝑋𝑡−𝑘  + 𝜀𝑡 +  𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + 𝜃3𝜀𝑡−3 + ⋯ + 𝜃𝑟𝜀𝑡−𝑟    
            (3) 

 𝑋𝑡 − 𝜗1𝑋𝑡−1 − 𝜗2𝑋𝑡−2 − 𝜗3𝑋𝑡−3 − ⋯ − 𝜗𝑘𝑋𝑡−𝑘 = 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + 𝜃3𝜀𝑡−3 + ⋯ + 𝜃𝑟𝜀𝑡−𝑟    
 

(1 − 𝜗1𝐵 − 𝜗2𝐵  
2 − 𝜗3𝐵  

3 − ⋯ − 𝜗𝑘𝐵  
𝑘)𝑋𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵  

2 − 𝜃3𝐵  
3 − ⋯ − 𝜃𝑟𝐵  

𝑟)𝜀𝑡  

 

𝜗(𝐵)𝑋𝑡 = 𝜃(𝐵)𝜀𝑡  

Where 𝜗(𝐵) = 1 − 𝜗1𝐵 − 𝜗2𝐵  
2 − 𝜗3𝐵  

3 − ⋯ − 𝜗𝑘𝐵  
𝑘 and 𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵  

2 − 𝜃3𝐵  
3 − ⋯ −

𝜃𝑟𝐵  
𝑟, the backward shift; 𝐵𝑘𝑋𝑡 = 𝑋𝑡−𝑘  

Frequently, after achieving stationarity, time series models contain AR(k) and MA(r) of certain orders which in 
combination could be used for forecast.  The model is usually referred to as the ARMA (k, r) process where k is the 
order of the autoregressive part and r is the order of the moving average part. 
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ARIMA Models 
 

The ARIMA models can further be extended to non-stationary series by allowing the differencing of the data series 
resulting in ARIMA models. The general non-seasonal model is known as ARIMA (k, d, r): where with three 
parameters; k is the order of autoregressive, d is the degree of differencing, and r is the order of moving average. The 
ARIMA(k,d,r) model is denoted as follows: 
 

𝜗(𝐵)∇𝑑𝑋𝑡 = 𝜃(𝐵)𝜀𝑡  

Where ∇ (𝐵) = 1 − 𝐵 is the differencing parameter applied d times, and d is a non-negative integer.  

𝜗(𝐵) = 1 − ∑ 𝜗𝑖

𝑟

𝑖=1

𝐵𝑖  and  𝜗(𝐵) is the AR operator 

𝜗(𝐵) = 1 − ∑ 𝜃𝑗

𝑟

𝑗=1

𝐵𝑗  and  𝜃(𝐵) is the MA operator 

 

Data  
The data used in this work are of secondary sources. The comprised of monthly birth rate in federal medical center 
Otueke, Bayelsa State, Nigeria from April 2015 to April 2022.  
 

Test for stationarity:  
The ARIMA model is suitable for stationary time series data, thus, a test for stationarity (unit root test) of the data is 
necessary before further analysis. The unit root test for the data was carried out using the Augmented Dick Fuller (ADF) 
Test.  
 

Results 
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Fig.1 Time Plot of Birth Rate  
Table 1: Unit Root Test of Monthly Birth Series 
 

Null Hypothesis: MONTHLYBIRTH has a unit root  
Exogenous: Constant   
Lag Length: 0 (Automatic - based on SIC, maxlag=11) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -4.139385  0.0614 

Test critical values: 1% level  -3.510259  
 5% level  -2.896346  
 10% level  -2.585396  
     
     *MacKinnon (1996) one-sided p-values.  
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Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(MONTHLYBIRTH)  
Method: Least Squares   
Date: 11/06/23   Time: 20:42   
Sample (adjusted): 2015M05 2022M04  
Included observations: 84 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     MONTHLYBIRTH (-1) -0.710488 0.171641 -4.139385 0.0001 
C 7.822300 1.892134 4.134115 0.0001 
     
     R-squared 0.172841     Mean dependent var 0.666667 
Adjusted R-squared 0.162754     S.D. dependent var 7.705941 
S.E. of regression 7.051026     Akaike info criterion 6.767745 
Sum squared resid 4076.791     Schwarz criterion 6.825621 
Log-likelihood -282.2453     Hannan-Quinn criter. 6.791011 
F-statistic 17.13451     Durbin-Watson stat 1.384478 
Prob(F-statistic) 0.000084    
     
      
Table 1 shows the ADF result for the monthly birthrate data, demonstrating the nonstationary nature of the data. The 
data was differenced and the plot of the first difference is given in figure2 below  
 

-20

-10

0

10

20

30

40

50

60

2015 2016 2017 2018 2019 2020 2021 2022

Fig.2:Time Plot of the first difference  
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Table 2: Unit root test fort the differenced series. 
Null Hypothesis: D(DMONTHLYBIRTH) has a unit root 
Exogenous: Constant   
Lag Length: 2 (Automatic - based on SIC, maxlag=11) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -8.025997  0.0000 

Test critical values: 1% level  -3.514426  
 5% level  -2.898145  
 10% level  -2.586351  
     
     *MacKinnon (1996) one-sided p-values.  
 

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(DMONTHLYBIRTH,2)  
Method: Least Squares   
Date: 11/06/23   Time: 20:50   
Sample (adjusted): 2015M09 2022M04  
Included observations: 80 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     D(DMONTHLYBIRTH(-1)) -3.228095 0.402205 -8.025997 0.0000 
D(DMONTHLYBIRTH(-
1),2) 1.191971 0.297880 4.001510 0.0001 
D(DMONTHLYBIRTH(-
2),2) 0.443130 0.146787 3.018868 0.0035 
C 0.579052 0.926766 0.624809 0.5340 
     
     R-squared 0.759483     Mean dependent var 0.587500 
Adjusted R-squared 0.749989     S.D. dependent var 16.57793 
S.E. of regression 8.289154     Akaike info criterion 7.116480 
Sum squared resid 5221.966     Schwarz criterion 7.235581 
Log likelihood -280.6592     Hannan-Quinn criter. 7.164231 
F-statistic 79.99517     Durbin-Watson stat 1.575921 
Prob(F-statistic) 0.000000    
     
 
 
 
 
 

     
Table 2 shows that the Augmented Dickey-Fuller test, at the first difference, is 0.00. Thus, the series is considered to 
be stationary at the first differencing. We can progress to determine a suitable model for the series.  
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Fig.3 Correlogram of birth rate data after first difference  
 
Table 3 Estimate of ARIMA Model 
Dependent Variable: DMONTHLYBIRTH  
Method: ARMA Maximum Likelihood (OPG - BHHH)  
Date: 11/14/23   Time: 08:55   
Sample: 2015M05 2022M04   
Included observations: 84   
Convergence achieved after 23 iterations  
 
Coefficient covariance computed using an outer product of gradients 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.142059 0.272340 0.521622 0.6034 
AR(1) 0.206107 0.382689 0.538575 0.0007 
MA(1) -0.857705 0.193780 -4.426189 0.0000 
SIGMASQ 50.05519 3.705391 13.50875 0.0000 
     
     R-squared 0.146902     Mean dependent var 0.666667 
Adjusted R-squared 0.114911     S.D. dependent var 7.705941 
S.E. of regression 7.249686     Akaike info criterion 6.857966 
Sum squared resid 4204.636     Schwarz criterion 6.973719 
Log likelihood -284.0346     Hannan-Quinn criter. 6.904498 
F-statistic 4.591952     Durbin-Watson stat 1.383635 
Prob(F-statistic) 0.005117    
     
     Inverted AR Roots       .21   
Inverted MA Roots       .86   
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Fig 4. Ljung-Box Q test of the residual 
 
Conclusion 
In this study we empirically evaluated the ARIMA 
model that will be appropriate for forecasting the 
monthly birth rate in Bayelsa State, Nigeria. The time 
plot of the series shown in Figure 1 follows an irregular 
sig-sag pattern showing both upward and downward 
movement.  The Augmented Dickey Fuller test 
revealed that the monthly time series of birth rates 
contains unit root. The data was seen to be stationary 
in the first difference. An appropriate forecasting 
model was obtained using the Box-Jenkins method. 
Based on the behavior of ACF and PACF plots, the 
ARIMA (1,1,1) model was identified as the most 
adequate model. The model adequacy was confirmed 
through Ljung-Box Q test. The residual of the model 
was checked using Ljung-Box and it shows no sign of 
autocorrelation in the residual. We recommend that 
further studies should be carried out on forecasting 
Bayelsa State’s monthly birth rate using the model.  
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