Construction of Discriminant and Classification Function For the Separation of Two Periwinkle Types (Rough and Smooth)

Okereke, C.U.
Department of Statistics, Michael Okpara University of Agriculture, Umudike, Nigeria.

Article Information

Article \# 08014
Received: $12^{\text {th }}$ July 2022
$1^{\text {st }}$ Revision: $15^{\text {th }}$ August 2022
$2^{\text {nd }}$ Revision: $27^{\text {th }}$ Sept. 2022
Acceptance: $28^{\text {th }}$ Sept. 2022
Available online:
$30^{\text {th }}$ Sept. 2022

Key Words

Linear discriminant, Periwinkle, Probability, Morphological measurement

Abstract

The aim of the project is to develop a linear discriminant and classification function that using morphological measures, can most effectively distinguish between rough and smooth periwinkle forms. I employed a secondary data set that included measurements for weight, shell length, shell width, aperture length, and aperture width for 12 rough and 12 smooth type periwinkles. The data set was subjected to discriminant and classification analysis after justifying the assumption of distinct group mean and equality of covariance matrices. The linear discriminant that best separated the two groups is $Z=1.013 x_{1}-0.683 x_{2}-1.814 x_{3}-5.142 x_{4}-$ 5.200 while the classicification ; assign y to rough if $Z>5.2009$ and to smooth if $\mathrm{Z}<5.2009$. The apparent error rate in the classification obtained from the resubstitution method was 0.208 . The minimized error rate was 0.0763 . This shows that about 7.63% of the obiects were incorrectly allocated to one population *Corresponding Author; Okereke, C.U.; kettybanky09 @ yahoo.com

Introduction

Discriminant analysis and classification are multivariate techniques concerned with separating distinct sets of objects and allocating new objects to previously defined groups. As a separation procedure, it is often employed on a one-time basis to investigate observed frequencies.
As usual relationships are not well understood. Discriminant function Analysis has been used extensively in the past to derive optimal combinations of variables to different groups because of its computational simplicity. However Discriminant function Analysis assumes that the predictors have a multivariate normal distribution along with homogenous variance-covariance matrices Harrell (2001). Discriminant analysis as a general research technique can be very useful in the investigation of various aspects of a multivariate research problem. It is sometimes preferable to logistic regression especially when the sample size is very small and the assumptions are met. Application of it to the failed industry in Nigeria shows that the derived model appeared to outperform the previous model build since the model can exhibit true ex-ante predictive ability for about 3 years subsequent to Alayande and Bashiru (2015).
Periwinkle is a univalve, prosobranch gastropod found in the intertidal zone of brackish ecosystems in NigerDelta and other parts of West African coastal waters such as mangrove swamps, creeks, lagoons, and estuaries. Periwinkles have been described by Badmus et al (2007) as small marine snails with spinal - cone, shaped shells having a round opening and dull interior. The genus T.s fuscatus comprises a single species that has two varieties; Tympanotonus fuscatus var fuscatus
and T. fuscatus var radula. T.fuscatus var fuscatus is characterized by turreted, glandular and spiny shells with tapering ends, Jambo and Chinda (2009) and inhabits the mudflats of the Lagos Lagoon system which is a large expanse of shallow waters extending from the republic of Benin in the west to the Niger Delta in the East, Hill, and Webb (2008), Yoloye (2002), Fagade (2005). T,fuscatus var radula has an elongated shell with regular increasing whorls, weakly curved ribs, and much fine striation with blackish brown stripes on the shell. The loss of apex or last whorl is common among adults and a protective operculum in the aperture is used to seal the snail in case of any disturbance Moruf (2015).

They usually inhabit soft substratum or mudflats rich in decaying organic matter and detritus Jamabo and Chinda (2010). When in their habitat, they migrate to the coastal edge and usually aggregate under the breathing roots of mangrove plant species such as Avicenia nitida, Rhizophora mangle, and Nypa palm for protection from the direct heat of the sun Cariton and Cohen (2002). They provide a livelihood and nutrition for the vast majority of people and constitute a major food item or delicacy of a large number of people living in the Niger - Delta. Jamabo and Chinda (2010).
Millions of T, fuscatus are transported in jute bags daily to the markets for sale. They can remain in these bags for weeks without water. During the transportation to the markets, the periwinkles are subjected to high temperatures in addition to a lack of food and water. Thermal tolerance has been used to examine the thermal capacities of marine invertebrates to tolerate their environment Egonmwan (2007).

International Journal of Basic Science and Technology
March, Volume 8, Number 3, Page 92-100
According to Asunkkwari and Archibong (2011), periwinkles have a very high protein content of $10.2 \mathrm{mg} / \mathrm{ml}$. It is a relatively cheap source of animal protein and its shell is commonly used as a a source of

Methods

Box's M Test

In discriminant analysis, we assume that the individual group covariance matrices are equal
(homogeneity across groups). In this case, we use the Box's M statistic. The statistic M is a modification of the likelihood ratio and varies between 0 and 1 in which we fail to accept the null hypothesis $\left(H_{0}\right)$ when its value tends toward 0 and otherwise if the value tends toward 1. The chi-squared $\left(\chi^{2}\right)$ and F-test
$S=\frac{1}{n-p} \sum_{i=1}^{p}\left(n_{i}-1\right) \ln \left|S_{i}\right|$
$M=(n-p)|S|-\left(n_{i}-1\right)\left|S_{i}\right|$
$C_{1}=\left[\frac{2 k^{2}+3 k-1}{6(k+1)(p-1)}\right]\left[\sum_{i=1}^{p} \frac{1}{n_{i}-1}-\frac{1}{n-p}\right]$
approximation for the distribution of M, either of these test approximations is referred to as Boxes' M-test

$$
H_{0}: \sum_{1}=\sum_{2}=\cdots=\sum_{p} \quad \text { vs } \quad H_{1}: \sum_{1} \neq \sum_{2} \neq \cdots \neq \sum_{p}
$$ And suppose that $S_{1} \cdots S_{p}$ are sample covariance matrices from the n populations where each S_{i} is based on n_{i} independent observation each consisting of a kx1 column vector (or a 1 xk row vector).

We denote S as pooled covariance matrix.
calcium and phosphate in livestock feed and as ornaments Jamabo et al. (2009). This species has some medicinal value, the flesh is edible and also used as bait by fishermen Bob-Manuel (2012).
$U=-2\left(1-C_{1}\right) \ln M$ is approximately $\chi^{2}\left[\frac{1}{2}(p-1) k(k+1)\right]$
$\ln M=\frac{1}{2}\left(\sum_{i=1}^{p} n_{i}-p\right) \ln \left|S_{i}\right|=\frac{1}{2}\left(\sum_{i=1}^{p} n_{i}-p\right) \ln \left|S_{p l}\right|$
We reject the null hypothesis $\left(H_{0}\right)$ if $U>\chi_{\alpha}^{2}($ Or p-value $<\alpha)$
This estimate works well provided $n_{i}>20, p \leq 5$ and $k \leq 5$.

Group Two Classification

A simple procedure for classification can be based on our discriminant function,

$$
\begin{equation*}
Z=a^{\prime} y=\left(\bar{y}_{1}-\bar{y}_{2}\right)^{\prime} S_{p l}^{-1} y \tag{6}
\end{equation*}
$$

Where; y is the vector of measurements on the new sampling unit that we wish to classify into one of the groups (population). To determine whether y is closer

$$
\begin{equation*}
\bar{Z}_{1}=\frac{\sum_{i=1}^{n_{1}} z_{1 i}}{n_{1}}=a^{\prime} \bar{y}_{1}=\left(\bar{y}_{1}-\bar{y}_{2}\right) S_{p l}^{-1} \bar{y}_{1} \tag{7}
\end{equation*}
$$

similarly,
to \bar{y}_{1} or $\bar{y}_{2 \text { we check to see if } Z \mathrm{Z}(20) \text { is closer to }}$ the transformed mean \bar{Z}_{1} or \bar{Z}_{2}. We evaluate (20) for each observation $y_{i i}$ from the first sample and obtain $Z_{11}, Z_{12}, \ldots, Z_{1 n 1}$ from which

$$
\begin{equation*}
\bar{Z}_{2}=a^{\prime} \bar{y}_{2}=\left(\bar{y}_{1}-\bar{y}_{2}\right) S_{p l}^{-1} \bar{y}_{2} \tag{8}
\end{equation*}
$$

Denotes the two groups G_{1} and G_{2}, Fisher's (1936) linear classification assigns y to G_{1} if $Z=a^{\prime} y$ is closer to \bar{Z}_{1} than \bar{Z}_{2} and assigns y to G_{2} if Z is closer to \bar{Z}_{2}.
In general, Z is closer to \bar{Z}_{1} if $\mathrm{Z}>\frac{1}{2}\left(\bar{Z}_{1}+\bar{Z}_{2}\right)$
Because \bar{Z}_{1} is always greater than \bar{Z}. This can easily be shown as follows
$\bar{Z}_{1}-\bar{Z}_{2}=a^{\prime}\left(\bar{y}_{1}-\bar{y}_{2}\right)=\left(\bar{y}_{1}-\bar{y}_{2}\right)^{\prime} S_{p l}^{-1}\left(\bar{y}_{1}-\bar{y}_{2}\right)>0$
Because $S_{p l}^{-1}$ is positive definite. Thus, since $\frac{1}{2}\left(\bar{Z}_{1}+\bar{Z}_{2}\right)$ is the midpoint
$Z>\left(\bar{Z}_{1}+\bar{Z}_{2}\right)$ implies that Z is closer to \bar{Z}_{1}. By (2.4) the distance from \bar{Z}_{1} to \bar{Z}_{2} is the same as \bar{y}_{1} to \bar{y}_{2}. To express the classification rule in terms of y , we first write $\frac{1}{2}\left(\bar{Z}_{1}+\bar{Z}_{2}\right)$ in the form

$$
\begin{equation*}
\frac{1}{2}\left(\bar{Z}_{1}+\bar{Z}_{2}\right)=\frac{1}{2}\left(\bar{y}_{1}-\bar{y}_{2}\right)^{\prime} S_{p l}^{-1}\left(\bar{y}_{1}+\bar{y}_{2}\right) \tag{10}
\end{equation*}
$$

then the classification rule becomes; assign y to G_{1}
if $a^{\prime} y=\left(\bar{y}_{1}-\bar{y}_{2}\right)^{\prime} S_{p l}^{-1} y>\frac{1}{2}\left(\bar{y}_{1}-\bar{y}_{2}\right)^{\prime} S_{p l}^{-1}\left(\bar{y}_{1}+\bar{y}_{2}\right)$
And assign y to G_{2} if

$$
\begin{equation*}
a^{\prime} y=\left(\bar{y}_{1}-\bar{y}_{2}\right)^{\prime} S_{p l}^{-1} y<\frac{1}{2}\left(\bar{y}_{1}-\bar{y}_{2}\right)^{\prime} S_{p l}^{-1}\left(\bar{y}_{1}+\bar{y}_{2}\right) \tag{12}
\end{equation*}
$$

Prior Probability of Classification

Let P_{1} be the prior probability of π_{1} and P_{2} be the prior probability of π_{2} where $P_{1}+P_{2}=1$. The overall
probabilities of correctly or incorrectly classifying objects can be derived as the product of the prior and conditional classification probabilities:
(i) $\mathrm{P}\left(\right.$ correctly classified as $\left.\pi^{1}\right)=\mathrm{P}\left(\right.$ observation from π^{1} and is correctly classified as $\left.\pi^{1}\right)$

$$
\begin{equation*}
=\mathrm{P}\left(\mathrm{x} \varepsilon \mathrm{R}^{1} / \pi^{1}\right) \mathrm{P}\left(\pi^{1}\right)=\mathrm{p}(1 / 1) \mathrm{P}^{1} \tag{13}
\end{equation*}
$$

(ii) $\mathrm{P}\left(\right.$ misclassified as $\left.\mathrm{G}_{1}\right)=\mathrm{P}\left(\right.$ observation from G_{2} and is misclassified as $\left.\mathrm{G}_{1}\right)$

$$
\begin{equation*}
=\mathrm{P}\left(\mathrm{x} \varepsilon \mathrm{R}^{1 /} / \mathrm{G}_{2}\right) \mathrm{P}\left(\mathrm{G}_{2}\right)=\mathrm{P}(1 / 2) \mathrm{P}^{2} \tag{14}
\end{equation*}
$$

(iii) $\mathrm{P}\left(\right.$ correctly classified as $\left.\mathrm{G}_{2}\right)=\mathrm{P}\left(\right.$ observations from G_{2} and is correctly classified as

$$
\begin{equation*}
\left(\mathrm{G}_{2}\right)=\mathrm{P}\left(\mathrm{x} \varepsilon \mathrm{R}_{2} / \mathrm{G}_{2}\right) \mathrm{P}\left(\mathrm{G}_{2}\right)=\mathrm{P}(2 / 2) \mathrm{P}_{2} \tag{15}
\end{equation*}
$$

(iv) $\mathrm{P}\left(\right.$ misclassification as $\left.\mathrm{G}_{2}\right)=\mathrm{P}\left(\right.$ observation from G_{1} and is classified as
$\mathrm{G}_{2}=\mathrm{P}\left(\mathrm{x} \varepsilon \mathrm{R}^{2} / \mathrm{G}_{1}\right) \mathrm{P}\left(\mathrm{G}_{1}\right)=\mathrm{P}(2 / 1) \mathrm{P}_{1}$

Total Probability of Misclassification (TPM)

The criteria other than the expected cost of misclassification can be used to derive optimal classification procedures. The cost of misclassification
might be ignored and R_{1} and R_{2} can be chosen to minimize the total probability of misclassification (TPM).

International Journal of Basic Science and Technology
March, Volume 8, Number 3, Page 92-100
TPM $=\mathrm{P}$ (misclassifying a G_{1} observation or misclassifying a G_{2} observation) $=\mathrm{P}$ (observation from

Results and Discussion

The data for this work comprises five morphological measurements taken from 12 rough $\left(\mathrm{G}_{1}\right)$ and 12 smooth $\left(G_{2}\right)$ shelled periwinkle samples. Special features such as weight $\left(\mathrm{x}_{1}\right)$, shell length $\left(\mathrm{x}_{2}\right)$, shell width $\left(\mathrm{x}_{3}\right)$, aperture

ISSN 2488-8648
http://www.ijbst.fuotuoke.edu.ng/ 95
G_{1} and is misclassified $)+\mathrm{P}\left(\right.$ observation from G_{2} and is misclassified $=P_{1} \int_{R_{2}} f_{1}(x) d x+P_{2} \int_{R_{1}} f_{2}(x) d x$
length $\left(\mathrm{x}_{4}\right)$, and aperture width $\left(\mathrm{x}_{5}\right)$, were measured from both periwinkle samples. Morphological measurements can be used to increase the consistency of individuals in a population and the separation of individuals between populations Gwaza et al. (2013).

Table 1: The Morphological Measurements of Rough $\left(\mathrm{G}_{1}\right)$ Periwinkle

S/N	Weight	Shell Length	Shell Width	Aperture Length	Aperture Width
1	4.6	5.2	2.11	0.81	0.73
2	3.8	5.0	1.83	0.71	0.63
3	3.8	4.42	1.72	0.61	0.60
4	3.0	3.76	1.53	0.63	0.61
5	3.8	4.10	1.83	0.74	0.71
6	3.0	3.82	1.43	0.83	0.71
7	3.6	3.83	1.78	0.82	0.81
8	3.4	4.23	1.51	0.71	0.63
9	3.3	3.62	1.82	0.52	0.51
10	3.0	3.83	1.81	0.63	0.61
11	3.0	3.72	1.42	0.54	0.51
12	3.4	3.82	0.71	0.63	0.52

Table 2: The Morphological Measurements of Smooth $\left(\mathrm{G}_{2}\right)$ Periwinkle

S/N	Weight	Shell length	Shell width	Aperture length	Aperture width
1	3.9	4.83	1.62	0.64	0.52
2	2.4	3.71	1.43	0.53	0.48
3	3.6	4.10	1.52	0.53	0.51
4	4.2	4.31	1.57	0.51	0.47
5	3.5	4.42	1.72	0.53	0.50
6	2.8	4.62	1.61	0.51	0.50
7	2.6	3.73	1.41	0.51	0.50
8	3.0	3.62	1.62	0.63	0.61
9	3.2	3.91	1.71	0.63	0.61
10	3.6	4.12	1.82	0.53	0.51
11	2.9	3.91	1.81	0.62	0.61
12	3.0	3.83	1.71	0.63	0.61

Table 3: Tests Of Equality of Group Means

	Wilks' Lambda	F	df1	df2	Sig.
Weight	.939	1.431	1	22	.044
Shell_length	.999	.012	1	22	.015
Shell_width	1.000	.001	1	22	.070
Aperture_length	.665	11.103	1	22	.003
Aperture_width	.707	9.138	1	22	.006

Table 3 provides statistical evidence of significant differences between means of smooth and rough periwinkles.
Table 4: Box's M-Test for Equality of Covariance Matrices

International Journal of Basic Science and Technology
March, Volume 8, Number 3, Page 92-100
http://www.ijbst.fuotuoke.edu.ng/ 96

	Box's M		25.485
F	Approx.	1.274	
	df1	15	
	df2	1948.737	
Sig.	210		

From table 4 , the p-value 0.210 is greater than 0.05 , therefore, we do not reject the null hypothesis $\left(\mathrm{H}_{0}\right)$ and conclude that the covariance matrices do not differ between the groups

Table 5: Eigen values of Rough And Smooth Periwinkle Types

Function	Eigen value	\% of Variance	Cumulative \%	Canonical Correlation
1	$.658^{\mathrm{a}}$	100.0	100.0	.786

a. First 1 canonical discriminant function was used in the analysis.

From Table 5, a canonical correlation of 0.786 suggest the model explains 61.78% of the variation in the grouping variables. That is whether periwinkle is smooth or rough.

Table 6: Wilks' Lambda Test

Test of Function(s)	Wilks' Lambda	Chi-square	Df	Sig.
1	.378	9.855	5	.03

Wilk's Lambda test indicates the significance of the discriminant function. The table shows a significant function ($\mathrm{P}<$ 0.05) and provides the proportion of the total variability not explained. Therefore 37.8% variability is unexplained.

Table 7: Standardize Canonical Discriminant Function Coefficient

	Function
	1
Weight	.519
Shell_length	-.311
Shell_width	-.483
Aperture_length	.435
Aperture_width	.579

Table 7 provides an index of the importance of each predictor like the standardized regression coefficient (beta') did in regression. The sign indicates the direction of the relationship. Aperture width is the strongest predictor while shell width (- ve sign) is next in
importance as a predictor. These two variables with large coefficients stand out as those that strongly predict allocation to the rough and smooth groups. Weight, shell length, and aperture length were less successful predictors.

	Function
	1
Weight	1.013
Shell_length	-.683
Shell_width	-1.814
Aperture_length	5.142
Aperture_width	7.454
Constant	-5.200

unstandardized coefficients
The unstandardized coefficients from table 8 were used to create the discriminant function equation.

$$
\begin{equation*}
Z=1.013 x_{1}-0.683 x_{2}-1.814 x_{3}+5.142 x_{4}+7.454 x_{5}-5.200 \tag{18}
\end{equation*}
$$

These coefficients indicate the partial contribution of each variable to the discriminant function controlling for all other variables in the equation. They provide information on the relative importance of each variable.
3.1 Classification Rule for Two Groups \{rough $\left(\mathrm{G}_{1}\right)$ and smooth $\left(\mathrm{G}_{2}\right)$ \}

The linear classification rule employs the same discriminant function $z=a^{\prime} y$. Where; $a^{\prime}=(1.013,-0.683,-1.814$, $5.142,7.454)$. For the rough group $\left(\mathrm{G}_{1}\right)$ we find

$$
\begin{aligned}
\bar{z}_{1} & =a^{\prime} \bar{y}_{1}=1.013(3.4750)-0.683(4.1125)-1.814(1.6250)+5.142(0.6817)+7.454(0.6317) \\
& =5.9776
\end{aligned}
$$

Similarly for the smooth group $\left(\mathrm{G}_{2}\right)$;

$$
\begin{equation*}
\bar{z}_{2}=a^{\prime} \bar{y}_{2}=4.4242 \tag{19}
\end{equation*}
$$

Thus we assign an observation vector y to G_{1} if

$$
\begin{equation*}
z>\frac{1}{2}\left(\bar{z}_{1}+\bar{z}_{2}\right)=5.2009 \tag{20}
\end{equation*}
$$

And assign y to G_{2} if $z<5.2009$
Table 9: Classification result table

		Predicted Group Membership		Total
		Rough	Smooth	
	Count	Rough	9	3
	Smooth	2	12	
		Rough	75.0	12
		Smooth	16.7	25.0

$\mathrm{G}_{2}:$ Smooth	$\mathrm{n}_{2 m}=2$	$\mathrm{n}_{2 c}=10$
Predicted Membership		
Actual membership	$\mathrm{G}_{1}:$ Rough	$\mathrm{G}_{2}:$ Smooth
$\mathrm{G}_{1}:$ Rough	$\mathrm{n}_{1 c}=9$	$\mathrm{n}_{1 m}=3$

The apparent error rate expressed as a percentage is
APER $=\left(\frac{n_{1 m}+n_{2 m}}{n_{1}+n_{2}}\right) * 100 \%=\left(\frac{3+2}{12+12}\right) * 100 \%=\left(\frac{5}{24}\right) 100 \%=20.8 \%$

It has been observed from table 9 that 79.2% of the observations were correctly classified as rough and smooth periwinkle by the discriminant function.

Smooth periwinkles were classified with better accuracy of 83.3% than rough periwinkles which has 75%. Out of the total of 24 observations that 12 were

International Journal of Basic Science and Technology
March, Volume 8, Number 3, Page 92-100
rough, 9 were correctly classified as rough, while 3 were misclassified as rough. Out of the 12 smooth periwinkles, 10 were correctly classified as smooth, while 2 were misclassified as smooth. The apparent error is 20.8%.
Then
$\int_{R_{2}} f_{1}(x) d x=P\left(x \varepsilon R_{2} / \mathrm{G}_{1}\right)=\mathrm{P}(2 / 1)=0.8966$
ISSN 2488-8648
http://www.ijbst.fuotuoke.edu.ng/ 98
3.2 Total Probability of Misclassification (TPM)
$\mathrm{TPM}=P_{1} \int_{R_{2}} f_{1}(x) d x+P_{2} \int_{R_{1}} f_{2}(x) d x$

That is, P (observations from G_{1} and are misclassified)

$$
\begin{equation*}
\int_{R_{1}} f_{2}(x) d x=P\left(x \varepsilon R_{1} / \mathrm{G}_{2}\right)=\mathrm{P}(1 / 2)=0.7896 \tag{23}
\end{equation*}
$$

That is, P (observations from G_{2} and are misclassified)
P_{1} and P_{2} are the prior probabilities for groups.
$\mathrm{TPM}=0.50(0.8966)+0.50(0.7896)=0.8431$
This shows that the total probability of misclassification obtained is 0.8431 , which indicates the chance of an object being misclassified.

Table 10: Prior Probabilities for Groups

Periwinkle	Prior	Cases Used in Analysis	
		Unweighted	Weighted
Rough	.500	12	12.000
Smooth	.500	12	12.000
Total	1.000	24	24.000

From Table 10, we can see that all the objects had an equal chance of being classified or misclassified.
3.4: Optimum Error Rate (OER) Of Misclassification

Recall

$$
\begin{align*}
& \Delta^{2}=\left(\mu_{1}-\mu_{2}\right)^{\prime} \Sigma^{-1}\left(\mu_{1}-\mu_{2}\right) \\
& =\left[\begin{array}{l}
3.48-3.23 \\
4.11-4.09 \\
1.63-1.63 \\
0.68-0.57 \\
0.61-0.54
\end{array}\right]\left[\begin{array}{ccccc}
0.262 & 0.166 & 0.052 & 0.011 & 0.006 \\
0.166 & 0.207 & 0.048 & 0.010 & 0.003 \\
0.052 & 0.048 & 0.071 & 0.006 & 0.010 \\
0.011 & 0.010 & 0.006 & 0.007 & 0.006 \\
0.006 & 0.003 & 0.010 & 0.006 & 0.006
\end{array}\right]^{-1}\left[\begin{array}{c}
3.48-3.23 \\
4.11-4.09 \\
1.63-1.63 \\
0.68-0.57 \\
0.61-0.54
\end{array}\right] \\
& {\left[\begin{array}{l}
0.25 \\
0.02 \\
0.00 \\
0.11 \\
0.07
\end{array}\right]\left[\begin{array}{lcccc}
8.08 & -4.25 & -5.19 & -31.35 & 34.04 \\
-4.25 & 42.25 & -71.37 & -559.94 & 662.02 \\
-5.19 & -71.37 & 166.66 & 1192.15 & -1429.05 \\
-31.35 & -559.94 & 1192.15 & 9844.90 & -11520.50 \\
34.04 & 662.02 & -1429.05 & -11520.50 & 13703.87
\end{array}\right]\left[\begin{array}{lll}
0.25 & 0.02 & 0.00 \\
0 & 0.11 & 0.07
\end{array}\right]} \\
& \Delta^{2}=8.193 \\
& \Delta=\sqrt{8.193} \\
& =2.862 \tag{25}
\end{align*}
$$

$\operatorname{Min} \mathrm{TPM}=\mathrm{OER}=\Phi\left(\frac{-\Delta}{2}\right)=\Phi(-1.431)$

$$
\begin{equation*}
=0.0763 \tag{26}
\end{equation*}
$$

International Journal of Basic Science and Technology
March, Volume 8, Number 3, Page 92-100
The optimum error rate of misclassification was calculated and the result gave 0.0763 . From the optimal classification rule, about 7.63% of the objects were incorrectly allocated to one population.

Conclusion

Based on the result obtained, we conclude that the linear discriminant function, will correctly classify periwinkle as either rough or smooth 79.2% and misclassify periwinkle as either rough or smooth 7.63% of the time.

References

Alayande, S. and Bashiru, A. (2015).An Overview and Application of Discriminant Analysis in Data Analysis.IOSR Journal of Mathematics, Volume 11, (1) 12-15.

Asunkkwari, A.A and Archibong, A.A (2011). The effect of crude extracts of periwinkle on some electrolytes and hematological parameters of water albino rats. M.Sc thesis.

Badmus, M.A.O, Audu, T.O.K and Anyata, B.U (2007). Removal of lead ion from industrial waste waters by activated carbon prepared from periwinkle shells (Tympanotonus fuscatus). Turkish journal of Engineering and Environmental Sciences, 31,251-263.
Bob-Manuel, F.G (2012). A preliminary Tympanotonus fuscatus (Lineaus, 1758) and parchymelania aurita (muller) at the Rumuolumeri mangrove swamp creek, and survival analysis. Springer-verlag, New York. http;//dx.doi.org/10.1007/978-1-457-3462-1

Hill, M.B and Webb, J.E (2008). The ecology of Lagos Lagoon part II: the topography and physical features of Lagos harboura and Lagos Lagoon. Phill. Trans R.Soc.Lond:B.241:319-333

Jamabo, N.A., Chindah, A.C., and Alfred Ockiya,(2009). Length - weight relationship of a mangrove prosobranch typanotonus fuscatus var fuscatus (Linnaeus, 1758) from the Bonny Estuary, Niger Delta, Nigeria. World Journal of Agricultural Sciences 5(4) : 384-388.

ISSN 2488-8648
http://www.ijbst.fuotuoke.edu.ng/ 99
Niger Delta, Nigeria.Agricultural and Biological Journal of north America ISSN print 2151-7517, ISSN. Online 2151-7525, doi: 105251/abjria.3.6265.pp:265270.

Cariton, J.T and Cohen, A.N. (2002). Periwinkle's Progress: The Atlantic snail Littorina Saxatilis (Mollusca Gastropoda) establishes a Colony on Pacific Shores. Veriger 41(4): 333 - 338.

Egonmwan, R.I (2007).Thermal tolerance and evaporate water loss the mangrove probranches, (Tympanotonus fuscatus) var radula (certithracea: potamidiadae). Parkistan journal of Biological Science; 10(1) :163-166.
Fagade, S.O (2005). Studies on the biology of some fishes of the Lagos Lagoon, Ph.D thesis, University of Lagos pp: 385
Fisher, R.A. (1936). The Use of multiple measurements in taxonomic problems. Annals of Eugenics. 7(2): 179188.

Gwaza, D., Tor, N. and Wamagi, T. (2013). .Discriminant analysis of morphological traits in selected population of the Tiv local chicken ecotype in the derived Guinea Savanah of Nigeria .IOSR Journal of Agriculture and Veterinary Science. 3. 60-64.

Harrell, F.E (2011). Regression modeling strategies: With application to linear models, logistic regression,

Jamabo, N.A., and Chindah ,A.C., (2010). Aspects of the ecology of typanotonus fuscatus var radula in the mangrove swamps of the upper Bonny River, Niger Delta. Current Research Journal of Biological Sciences 2 (1): 42-47

Moruf, R.O.(2015). Some aspect of the Biology of periwinkle, Tympanotonus fuscatus var radula in mangrove swamp of Lagos Nigeria. M.Sc thesis, University of Lagos 97.
Yoloye, V.L (2002). On the biology of the West African bloody cockle, Anadara (Senilia) Senilis L. Ph.D thesis. University of Ibadan, Nigeria.

