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Introduction 

The systematic study of algebraic structures could be 

made easier when a few algebraic systems are singled 

out to give insight into the overall algebraic theory and 

its usefulness in a real-life situation. This work has 

picked only monoids and some of their attendant 

properties. Monoid is one of the algebraic structures 

useful in word formation in computer machines.  

In his mathematical machine theory, Anzt and Huckle 

(2019) stated that; if f1 and f2 are two abstract 

machines with the input monoid of f1 free and there 

exists an injective monoid homomorphism J: M→ 𝑀𝑓1
, 

a surjective monoid homomorphism.  E : M → 𝑀𝑓2
, 

and a function h : A2  → A1 such that it commutes. Then 

there exists a monoid homomorphism H : f1   → f2   a 

morphim of abstract machines. 

Prather (1976) states that computer arithmetic are 

inherently finite, so there cannot be an exact 

correspondence (isomorphism) between this 

arithmetic and the actual number of a system they 

attempt to imitate. He posited that for many purposes 

imitation or simulation is quite acceptable because the 

correspondence of the actual numbers and their 

computer representations have been designed to 

preserve certain important algebraic features. 

According to   Balachandran and Mungesu (2007), the 

characterization of homomorphic images using 

congruence relation on the domain in monoids and 

related concepts of simulation and realization are aptly 

illustrated through the machine design techniques 

deriving from homomorphism theory. 

  The monoids have great application in finite state 

machines, formal languages e.t.c.  Kohazi (2007). 

Krohn-Rhodes in Wikipedia (2021) states that in 

theoretical computer science, the study of monoids is 

fundamental for automata theory. 

  Achary and Mahapatra (2010) in theoretical 

computers demonstrated the basis for the application 

of the homomorphism theory by making a connection 

to the language recognition capabilities of machines. 

They stated that if A and B are automata, then A is said 

to have the capability of B if there is a redesignation 

of IA and a monoid homomorphism. Furthermore, 

Reingold (1974) in his homomorphism theory for 

automata showed that if ∅: 𝐴 → 𝐵 is a surjective 

automata homomorphism, then the kernel R is an 

automata congruence on A and B ≈ 𝐴/𝑅 

The significance of machines in the life of man cannot 

be over-emphasized hence some work has been done 

concerning the process of word formation in 

machines.   Arbib (1969) emphasized the 

appropriateness of the use of categorical algebra 

notations and methods in the framework of automata 

theory. He showed that the proofs of basic results 

linking the notion of machines, normal forms of a 

machine, division of machines, and monoids are 

reduced to trivial exercises in commutative diagrams. 

    Group theory is one aspect of algebra studied in 

Mathematics and Sciences because of its wide range 

of applications. Monoids are specifically chosen 

because they are useful infinite machines and formal 

languages. The importance of homomorphism for 

algebra is applicable in the theory of monoids. The 

characterization of homomorphic images through 

congruence relations is very useful in monoids and the 

related concepts of simulation and realization are 
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shown through machine techniques deriving from 

homomorphic theory. 

   This work has picked only monoids and its attendant 

properties to illustrate the importance of algebraic 

structure to machines. The paper relates monoids and 

their congruence to word formation in machines and 

gives insight into how the compiler translates the high-

level language to machine code. This eventually 

affords a little knowledge of how the machines 

function

 

Definitions  

2.1 An algebraic structure         AC = (AC ; T ; P) = (A1 

, A2, …….   T ; P)  

    is a collection of algebraic sets, functions and 

propositions written as   

          T = U Ta   where each F ∈ Ta takes its values in 

the set  Aa  where 𝐴𝑎 is the  

        algebras of the structure (Sarachino, 1992) 

 

  2.2   A monoid M = (M, . , e) is an algebraic structure 

which under a defined binary operation possesses the 

property of associativity and has identity  element. i.e. 

for all x,y,z in M, the operation x.(y.z) = (x.y).z and 

x.e=e.x=e in  the operation  (Audu et al., 2001). 

        (x,y) →(x.y). if M is a monoid and R in M an 

equivalence relation on M  satisfying the property xRu  

and yRv  implies  x.y R u.v ,then R is a congruence 

relation. 
 

   2.3 There are interactions between algebraic 

structures that are useful to science and technology. 

There exists certain relationship between pairs of 

element of a given set. If for each pair (x, y) of 

elements of a given set A the statement   x ~ y has a 

meaning then ~ is a relation in A.  Furthermore, if the 

  relation ~ on the set A possesses the properties of: 

          (i)    x ~ x for all x ∈ A; 

                 Ta ∈ T and TB ∈ T =>  Ta o TB ∈ T 

              Then T is called a transformation monoid  

   T = (T, 0, Is) when composition is taken as monoid 

operation. 

      i.e. 

         (Tao, TB) (s) = (TB (s)) 

     is taken as the product of Ta0 TB in the monoid T.  

     Obviously, Ta0 (TB, 0, TY) = (Tao, TB)O Ta and 

                        Ta 0 Is = Is 0 Ta = Ta 

     shows that T is indeed a monoid. 

 

2.4   Now consider the following monoids:    

         Let 𝜕I be a finite set of symbols denoted by 

          ∑ = {𝜎1, 𝜎2,…, 𝜎n} and called an alphabet. 

   A finite sequence of symbols from ∑ written one 

after another without anyintervening punctuation is 

called a word x on  ∑ 

Thus x = 𝜎I 1 𝜎i 2…𝜎I k 

If the length of x is denoted by  /x/ = K, then the null 

word x on  ∑ (a sequence of length zero) is admitted 

in defining.  

         ∑ ∗  =  {𝑥: 𝑥 𝑖𝑠 𝑎 𝑤𝑜𝑟𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡 ∑ }    

i.e.    ∑∗ = {𝑥: 𝑥 𝑖𝑠 𝑎 𝑤𝑜𝑟𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡 ∑}  is 

the set of all words. generable from the given alphabet. 

(Humphreys, 1997) 

Consider y on  ∑  where y = 𝜎j 1, 𝜎j 2…,𝜎j m   and 

subsequently a juxtaposition (concatenation of words 

i.e. x.y = 𝜎i 1  𝜎i 2…𝜎𝑖 k. 𝜎j 1 , 𝜎j 2…,𝜎jm) 

here,  it is obvious that 

x . 𝑒 =  𝑒 . x = x for every word x. 

Then   ∑∗ is the free monoid generated by the alphabet 

∑ 

The following are examples of monoid generated 

juxtaposition: 

Let   ∑ = {𝑎, 𝑏, 𝑐, 𝑑}, then ∑∗ could be  

abba   dabba = abbadabba where (a, b, c, d) is in ∑∗ 
 

  Now let ~ be a relation on a set A. then if; 

(i) x ~ x  ∈ A  for x ∈ 𝐴  

(ii)   x ~ y implies y ~ x, for x, y ∈ A and  

(iii) x ~ y and y ~ z implies x ~ z for all x, y, z ∈ A 

then the relation is called equivalence relation i.e. a   

relation is called equivalence relation if its reflexive; 

symmetric and transitive.  

A monoid is therefore defined as follows: Let M = (M, 

., e) and consists of a set M such that x.y = y.x is in M 

and x(y.z) = (x.y)z is in M for x, y, z in M with a 

distinguished element e and binary operation (x, y) → 

x.y. 

If for all x, y, z ∈ M, and x. (y.z) = (x. 𝑦). 𝑧 

 i.e. associativity and there is  e  ∈ M such that 

    x.e = e. x = x  i.e. identity  (Arigbadu, 1992) 
 

2.5 Now let M = (M,. ,e) for any monoid  and let R be 

an equivalent relation on the M that satisfies the 

additional property xRu and yRv  implies x – y R u – v , then 

R is called a congruence relation M. 

Let A be any set. A binary operation on A is a mapping 

of AXA into a set B containing A as a subset which 

maps each element (x, y) in AXA into an element   

x,y of B i.e. A rule of combination of any two elements 

of A to produce another object usually but not 

necessarily in A is a binary operation. (Aziken, 1996) 
 

Transformation of Monoids  

Monoids could be constructed from classes through 

algebra transformation. Functions or mapping can also 

be transformed from a set into itself. In computer 

science, a computer transforms programs from high 

level language into machine language. Codes 

transform numbers or alphanumeric data into binary 

sequences. If S is any set and  T= (Ta ) is a collection 

of mapping Ta : S → S which contains the identity 

http://www.ijbst.fuotuoke.edu.ng/
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transformation Is and is closed with respect to 

composition of mapping i.e. 

aa: da = aada 

cab.𝑒 = cab 

Also if  ∑ = {0, 1}, 𝑡ℎ𝑒𝑛  ∑∗  =
 {𝑒, 0,00,01,10,000,001 … . } 

  

01101 = 01101 

10101= 10101 

01e  =01 

Homomorphism of Monoids 

There exist a great deal of interaction between 

algebraic structures, and the monoid is not left out. The 

relationship between monoids is better understood 

through the way they operate on others.  Yehoshafat 

(1967) defines homomorphism is a mapping from one 

algebraic system to another, which preserves structure. 

It is defined as follows: 

Let (M,∗) and (N.A) be two monoids. A 

homomorphism from M to N is a mapping  Φ : M→N  

Such that for any x, y ∈ M, Φ(x ∗y) = Φ(x) ∗ Φ(y). 

The homomorphism theory isolates features of 

algebras and reveals precise conditions under which 

one algebra can simulate another. If Φ ∶  M → 𝑁 is a 

homomorphism as defined above and Φ is 1 – 

1(injective) then Φ is called monomorphic. If Φ is 

ontoΦ, Φ is called epimorphic. If Φ is both 1 – 1 and 

onto, Φ is an isomorphism from M to N. 

The diagram below visualizes the effect of the above concept i.e. 

 

 

 
 

Figure  (i)       Figure (ii) 

 

 

 

 

 

In fig (i) the homomorphismΦ: M → N is injective. We can also say that N realizes M 

Fig (ii) Φ:  M → N is surjective (onto) N is a homomorphic image of N. 

 

 Illustrations 

         The following illustrations are made in this work: 

(i)       consider the monoid  ∑ = (𝐴, +, 0)𝑎𝑛𝑑 𝐵 = (𝐵, +, 0) 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 Φ ∶  𝐴 → 𝐵  𝑤ℎ𝑒𝑟𝑒 

     Φ(n)  =     {
   0 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
   1 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

  
 

Surely, Φ(𝑛 + 𝑚) =  Φ(𝑛) +  Φ(𝑚).  𝑚𝑜𝑑𝑒 2 

This could be verified by considering the four cases  

                    n                      m 

                even                   even 

                even                   odd   

                odd                     odd 
 

If n and m are both even, then n + m are even i.e.   

           Φ(n + m) = 0 + 0 = Φ(n) + Φ(m) 

If n and m are both odd, then n + m is even i.e.   
                    Φ(n + m) = 1 + 1 = Φ(𝑛) + Φ(𝑚) =  0 

Here B the homomorphic image of ∑ and B only implement the arithmetic rules. 

(ii)       Consider the free monoid  N = (N, +, 0), the natural number.  

           Take X = {1} 

The two conditions can be verified i.e. 

           Here, every n ∈N has a representation as an algebraic expression. 

                  n = 1 + 1 + … +1 (n times) 

                   If M is any monoid, assign Φ(1) in M, then the extension 

                   Φ :  N → 𝑀 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 

                    Φ(𝑛) =  Φ(1) +  Φ(1) +  … + Φ(1) =  𝑛 . Φ(1) 

                     If M is denoted additively, M = (M, +, 0), then 

                 Φ(0) = 0 

http://www.ijbst.fuotuoke.edu.ng/


 

 

International Journal of Basic Science and Technology                                                              ISSN 2488-8648                                                                                                               

March, Volume 8, Number 2, Page 59 - 63                                                                      http://www.ijbst.fuotuoke.edu.ng/ 62 

 

 
 

                  Φ(0) = 0 . Φ(1) =  0 𝑎𝑛𝑑  

                             Φ(n + m) = (n + m)  Φ(1) 

                         = nΦ(1) +  𝑚Φ(1) = Φ(n) + Φ(m) 
 
This has shown monoid homomorphism. This is freely generated monoid homomorphism (Lehma, 1968) 

  

Theorems: The theorems that are related to the word 

formation and techniques in computer machine 

operations is discussed in this section, The 

characterization of homomorphic images by means of  

 

congruence relations on the domain of monoids and 

related concepts of simulation is illustrated through 

machine design techniques deriving from 

homomorphic theory
     

 (i).    Let M be any monoid and  Σ  an alphabet. 

              If  Φ :  Σ → M  is a mapping, then Φ has a (unique) extension to a monoid homomorphism  Φ :  Σ → M.  

Consequently every finitely generated monoid is a homomorphic image of a free monoid.  

            Proof: Consider an arbitrary mapping 𝜙: Σ → Μ  relative to an arbitrary  

                         monoid     M = (M,. , 𝑒). 

             For each word = 𝜎I L , 𝜎I 2, ………𝜎I K in Σ ∗ where e =  Φ(∈) 

             Define Φ(𝑥) =   Φ(𝜎 i1)  . Φ (𝜎i 2) …… Φ(𝜎i K),  where the  

             multiplication takes place in M. 

            Since  Φ(𝑥 . 𝑦) =  Φ(𝜎i 1 , 𝜎i 2 , . 𝜎i K 𝜎j 1𝜎j 2, …….𝜎j m) 

           = Φ(𝜎i 1) . Φ(𝜎i 2) …. Φ(𝜎i K) . Φ(𝜎j 1). Φ(σj 2) … . Φ (𝜎j m) 

                    = Φ(𝑥) . Φ(𝑦) ___________________________________(*) 

   (*) is an extension of Φ to monoid homomorphism Φ : Σ ∗→ 𝑀 

Furthermore, define another monoid homomorphism as 𝜑 ∶ Σ ∗∗ → 𝑀 

With M = (M, ., 𝑒). 
Here 𝜑(𝑥) =  𝜑(𝜎i 1) . 𝜑(𝜎i 2) ………𝜑 (𝜎i K), And 

           .𝜑(𝑥) =  𝜑(𝜎i1). 𝜑 (𝜎i 2) ……..𝜑 (𝜎i K), 

           .𝜑(𝑥. 𝑦) =  𝜑 (𝜎i 1𝜎i 2 ,,……. 𝜎i K  𝜎j 1𝜎j 2, …….. 𝜎j m) 

          = 𝜑(𝜎i 1) . 𝜑(𝜎i 2) … 𝜑(𝜎i k) . 𝜑(𝜎j 1) . 𝜑(𝜎j 2) …𝜑(𝜎jmi) 

                              =𝜑(𝑥) .  𝜑(𝑦)___________________________(**) 

(*) and (**) are the same for the definition of x and y. 𝜑 =  Φ ℎ𝑒𝑛𝑐𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑎𝑛𝑑 𝑠𝑜 𝑡ℎ𝑒 𝑢𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠. 
Now let M be generated by a finite subset {𝜇1, 𝜇2, … , 𝜇𝑛}  ⊆ 𝑀 

Choose any alphabet Σ 𝑤𝑖𝑡ℎ 𝑛 𝑠𝑦𝑚𝑏𝑜𝑙𝑠 𝑎𝑛𝑑 𝑑𝑒𝑠𝑖𝑔𝑛 

                    Φ(𝜎i 1) =  𝜇𝑖 where i = 1, 2, …, n 

It is clear here that Φ extends to a monoid homomorphism  Φ ∶  Σ ∗ → 𝑀. 
(ii).        𝐸𝑣𝑒𝑟𝑦 𝑚𝑜𝑛𝑜𝑖𝑑 𝑖𝑠 𝑖𝑠𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐 𝑡𝑜 𝑎 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑛𝑜𝑖𝑑. 
 Proof: Let M = (M,., 𝑒) 𝑏𝑒 𝑎𝑛𝑦 𝑚𝑜𝑛𝑜𝑖𝑑 𝑎𝑛𝑑  
               𝑇M = { Tg:  g ∈ 𝑀 } 𝑏𝑒 𝑡ℎ𝑒 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠  
 𝑇g: M → 𝑀 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 𝑇g(x) = x . 𝑔  𝑓𝑜𝑟 𝑥𝜖𝑀. 
This mapping is surjective and in addition  

Tg = Th => Tg(x) = Th(x) for all  x ∈ 𝑀 

x . g = x. ℎ  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝜖 𝑀 

g = h   (taking x = e) 

Hence the mapping is also injective. It could be observed that the mapping runs the identity element of m into the 

identity element of  

         TM :  e→ Te = 1m  

           i.e.     [ Te(x) = x . e = x = 1m(x)] 

Similarly, Tgh(x) = x (gh) = (xg) h 

                            = Th(Tg(x)) = Tg . Tn(x) 

Conditions of isomorphism are satisfied. Every monoid is therefore isomorphic to a transformation monoid. 

(iii) Let  Φ : M → 𝑀 be a monoid monomorphism. Then the kernel of 𝜙 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑒 𝑅 𝑜𝑛 𝑀 is isomorphic to 

M/R. Conversely if R is a congruence relation on M, then there is a surjective homomorphism  Φ : M → 𝑀/R  with 

kernel R. 

Proof Let R denote the kernel of 𝜙: 𝑀 → 𝑀   

Suppose xRu  and  yRv , by definition of kernek we have 
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                      𝜙(𝑥𝑦) =  𝜙(𝑥) 𝜙(𝑦) =  𝜙(𝑢)  𝜙(𝑣) =  𝜙(𝑢𝑣) 

                                    = 𝜙 xyRuv 

                      Hence the congruency of R  on  M.  

                  Now  Φ(𝑥)𝜙(𝑦) <=> xRy < ==>  [𝑥] =  [𝑦] 
The mapping is well defined and injective.  

Similarly we can find an element that maps onto a given [𝑥] 𝑖𝑛 M/R     viz  𝜙(𝑥)                

Also e = 𝜙(𝑒) →  [𝑒]  is the identity element in M/R 

                     It is therefore obvious that the mapping is also surjective. 

                       We need investigate if the mapping preserves product. 

            Suppose 𝜙(𝑦) →  [𝑦], 𝑡ℎ𝑒𝑛  𝜙(𝑥) . 𝜙(𝑦) =  𝜙(𝑥𝑦) →  [𝑥𝑦] =  [𝑥] . [𝑦] 
                            Conversely, if R is  congruence on M, then the mapping  

                              Υ(𝑥) = [𝑥]  𝑖𝑠 𝑒𝑎𝑠𝑖𝑙𝑦 𝑠𝑒𝑒𝑛 𝑡𝑜 𝑏𝑒 𝑎 𝑠𝑢𝑟𝑗𝑒𝑐𝑡𝑖𝑣𝑒 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚   

                                                           Υ: 𝑀 → M/R 

                                And since Υ(𝑥) =  Υ(𝑦) ⇔  [𝑥] = [𝑦]  ⇔ xRy 

                                The kernel of Υ is given congruence relation R. 

 

Conclusion 

Data processing was greatly aided and simplified by 

the arrival of computer machines. The ensuing 

dynamic enhancements just added to the intrigue. The 

usefulness and contribution of science and technology 

in general, and mathematics in particular, may be seen 

in the mechanisms of these devices. Through the 

interaction of algebraic structures, this research has 

provided some insight into the machine mechanism. 

The creation of an algorithm necessitates the 

collaboration of numerous algebraic systems. 

Compilers, which translate high-level languages into 

machine language, make computer machine operation 

simple. In this process of machine operations, the 

monoid as an algebraic structure is critical. In 

machines, the monoid has been demonstrated to be 

useful in the word production process. 
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