International Journal of Basic Science and Technology
December 2019, Volume 5, Number 2, Pages 100 - 117

ISSN 2488 -8648
http://www.ijbst.com/ 100

Exponentiated Gumbel Family of Distributions; Properties and Applications

luwadi U. U.*, 2Okereke E. W. and 2 Omekara C. O.

'Department of Mathematics / Computer Science / Statistics/Informatics
Alex-Ekwueme Federal University Ndufu-Alike, Nigeria

’Department of Statistics Micheal Okpara University of Agriculture

Umudike, Nigeria.

Article Information

Abstract

Avrticle # 3001
Received date: 4™ Sept., 2019

In this study, we proposed a family of distribution called the Exponentiated

1%t Revision: 13" Oct, 2019  Gumbel family of distributions. Its density function is symmetric, right-skewed,

2" Revision: 30™ Oct, 2019
Acceptance: 6" Dec, 2019
Published: 12" Dec., 2019

Key Words
Exponentiated Gumbel,
T-X family, Entropy,
Order Statistics,

Bivariate Distribution
datasets

left-skewed and reverse-J shaped with increasing, decreasing and inverted bathtub
hazard rate function. Some special members of the model were obtained.
Mathematical properties of the proposed family of distributions derived include
quantile, generating functions, order statistics, and Renyi’s entropy. Bivariate
extension of the proposed family was discussed. The maximum likelihood method
was employed in obtaining the parameter estimates of the Exponentiated Gumbel
family. The usefulness of the proposed family was illustrated using two real
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Introduction

Many families or classes of univariate distributions
have been proposed in the literature by adding
parameters to the baseline distribution. The addition
of extra parameters has greatly improved the
flexibility and goodness of fit of the generated class.
Some known generated class of distributions include:
beta-G by Eugene et al. (2002), exponentiated type
distributions by Nadarajah and Kotz (2006), gamma—
G by Zografos and Balakrishnan (2009), Kumarasw-
amy-G by Cordeiro and de Castro (2011),
McDonald-G by Alexander et al. (2012),

Priliminaries
Given a random variable X with probability density
function (pdf) f(X) and cumulative distribution

function (Cdf) F(X). Let I’(t) be the pdf of a
W(F(x))

G(x)= j r(t)dt=R(W(F(x)))

a

exponentiated generalized class by Cordeiro et al.
(2013) , Transformed-Transformer (T-X) family by
Alzaatreh et al. (2013), T-X{Y}-method based on
guantile function by Aljarrah et al. (2014), T-R{Y}-
approach which redefined T-X{Y} by Alzaatreh et
al. (2014) , Kumaraswamy Marshall-Olkin family
Alizadeh et al. (2014) , exponentiated Weibull
generated family by Hassan and Elgarhy (2016),
Lindley-G by Cakmakyapan and Ozel (2016) and
extended Marshal-Olkin Gumbel -G by Ugwuowo
and Nwezza (2018).

continuous random variable T € [a,b]. Alzaatreh et

al. (2013) defined the cdf G(X) of a new family
of distributions of a random variable X as

2.1)

Where W (F (X)) satisfies the following conditions; W ( F (X)) € [a, b]

(

is differentiable and monotonically non-decreasing

W (F (x))
W(F(x))—>a as X—)—ooandW(F(X))—>bas X —> 00,
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In this paper, a new family of distribution called
Exponentiated Gumbel family (EGU—G) of
distributions is proposed. We used exponentiated

r(t)= % :1— exp {— exp (—t_T'ujHal exp {— exp(

and

o 2]

—0<t<mw,—0< u<w0,0>0,a>0

This paper aims to propose a family of distributions
using exponentiated Gumbel distribution as a
generator. The objectives are: to generate a flexible
family of continuous distributions; obtain skewed
distributions from symmetric ones; generate models
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Gumbel distribution as a generator. The pdf and
cdf of exponentiated Gumbel as given by Nadarajah
(2006) respectively are

_t__ﬂ)} exp(—t_—ﬂj (2.2)
O O

(2.3)

with various hazard rate function (hrf) shapes;

generate J-shaped, reverse J shaped, symmetric,
right-skewed or left-skewed distributions; providing
models that produce better fits than other
distributions with the same baseline distribution.

Taking W (F (X,&)) as the logit of cdf of a distribution, thus

W (F(x:8))= Iog(%}

where & is a vector of parameters in the baseline distribution. From (2.1) we have

'°9[1—Féff:2>j

[ r(t)at= RLIOQ(—lf é?f)g)jj

a

(2.3) and (2.2) can be written as

R(t)=1—[1—exp{‘BeXp(‘§jHa

G(x)=

-

a

Differentiating equation (2.5) and simplifying gives

2.4)

gl 2] ol Lo

respectively; where B =exp (ﬁj . From (2.4) we have
o

(2.5)

a-1

X):an(X;%)(F(X;i))ilexp _B[ F(x5) ]‘l’ - exp _B[MY (2.6)

o(1-F (x;g)){%’lj 1-F(xg)

1-F(x§)

If @ =1, equation (2.5) and (2.6) reduces to the cdf and pdf of Gumbel-X distribution defined by Al-Aqtash et

al. (2015). The hazard rate function (hrf ) and survival function (Sf ) of EGU—G respectively are given by
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8 () (F (x8)) 1+ exp B(lF
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h(x) =

O'(l— F (X;&))_&_l} 1-exp _B(lF(X.
and
_ F(x&) ~
S(x)=|1-exp _B(T(K%)J

The rest of the paper is organized as follows. In
section three, we present newly generated
distributions from the proposed family. Mathematical
properties including the shape of the density function,
moments, moment generating function, entropy and
order statistics of the proposed family are presented
in section 4. Section 5 discussed the bivariate

Special Models

@.7)

extension of the proposed family. Estimation of the
parameters of the proposed family is presented in
section 6. Two real datasets applications to illustrate
the flexibility of some of the members of the
proposed family are shown in section 7. The paper is
concluded in section 8.

In this section, some special models generated with the cdf in (5) are presented.

Exponentiated Gumbel-Normal

Letting F(X;Tg):CD(Z) in (2.5). The cdf and pdf of Exponentiated GumbeI—NormaI(EGuN) distribution

respectively are given by

G (x)=1-| 1-exp _B(Lz)f

1-D(z)

On (X):

o(1-w(z)) s

avp(z)(0(2) - of

and

=
Q|+

1-D(z)

KICR ] WINECR

a-1
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where ¢() and CD() are the pdf and cdf of the standard normal distribution. Figure 1 is some plots of the

pdf and hrf of EGUN for selected parameter values. Figure 1 shows that EGUN pdf can be right-skewed,
left-skewed and unimodal while the hrf is increasing and J-shaped.

— p=1,04=0.5,6=2,u1=0.5,61=1
4— p=2,0=0.5,6=5,u1=1,61=0.7
— p=0.8,0=0.7,6=5,u1=2,6 }=0.7
— p=1.5,0=0.8,6=1.2,u172.

EGuN density
EGuN hrf
02 04 06 08 1.0 1.2

Figure 1. Plots of EGUN pdf (left) and hrf (right) for selected parameter values

Exponentiated Gumbel-Weibull

Let the baseline distribution in (2.5) be a Weibull distribution with cdf F (x;&)=1—exp {— [%j } and pdf

a-1 a
f(x;&)zg[gj exp{—[%j } &=(a,b) . The pdf and cdf of exponentiated Gumbel Weibull

(EGUW) is obtained directly from (2.5) and (2.6) by substituting for the pdf and cdf of Weibull distribution
as defined above. Thus we have
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G, (x)=1-|1-exp<—B| —

Figure 2 shows the plots of EGUW distribution’s pdf and hrf for selected parameter values. Figure 2 reveals

that the density EGUW can be right-skewed, reverse J-shaped, and unimodal, while the hrf is increasing,
decreasing and unimodal.

0 _ o
- — a=0.5,b=1,u=0.5,0=3,6=0.5 @ <0.5,0=1,u=0.5,0=3,6=0.5
a=0.5,b=1,u=1,4=2.1,06=2.7 9 &.b=1.1=0.5.0:=0 5,6=
- a=2.5,b=1,u=6,0=1,6=2.9
o — _ — _ _ o
g S a=0,2,b=1,u=0.5,0=3,6=0.5 £ a4
3 z 9
2 ®
R W3
w o
0 |
o
o
° > |
o ° 5 T T T T T

Figure 2. Plots of EGU—W pdf (left) and hrf (right) for selected parameter values
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The pdf and cdf of Lomax distribution for x>0, a >0 b >0, respectively are given by

a

f(m&):g

Gumbel Lomax (EGUL) as

G (x)=1-|1—expq—

1—(1+§j
B T A
-t
b

and using (2.6), the pdf of EGuL is given by

aBa(1+X

bj(i*l]

9. (x)=

ab[l—(1+x
b

exps —

ja](i”J

0.20

EGuL density
0.10

0.00

EGuL hrf

1-exp

|
Qe

—(a+1) -a
X X
(1+Bj and F(X;é’;):l—[1+ Bj . Using (2.5) we obtain the cdf of exponentiated

Figure 3. Plots of selected parameter values of EGUL *s pdf (left) and hrf (right)
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Figure 3 is the plots of EGUL distribution’s pdf

and hrf for selected parameter values. It reveals i )
that EGUL densit N be unimodal reverse J- The shapes of the density function of EGUG can be
a ensity can be unimodal reverse described analytically. The critical points of the

shaped, and increasing, while the hrf may be J- density function are the roots of the equation given
shaped unimodal and decreasing. below

1 1 1
Y Y | et
F(xg) (1-F(xg)) o(1-F (x g))—[g-lj

MATHEMATICAL PROPERTIES

dlog[g(x)] f'(x&) f (%)

F(xg) |- (4.1)
1-F(x&

el e[ F08) )7
e BhPFWQJ

There may be more than one root to (4.1). If X = X, is a root of (4.1), then it corresponds to a local maximum, local

minimum or a point of inflexion depending on whether l//(X0)<0, l//(X0)>0 or l//(Xo)=0 where
:dzlog(g(x))

v(x%)=—02

The shape of the hrf can be determined by taking the log of (2.7) and differentiating with respect to X and
equating it to zero. The critical points of hrf are the roots of (4.2).

The roots of (4.2) may be more than one. If X =X, is a root of (4.2), then it corresponds to a local maximum, local
minimum or a point of inflexion depending on whether C(XO) <0, {(XO) >0 oré’(Xo) =0,
1 1 (1,
Mwﬁuﬂ:vma_”x@(a”)_(al) B (xg)(F(xg) -
dx f(x8) F(xg) (1-F(xg)) O_(l_F(X;g))—(é—lj

F(X,g) o (42)
1-F(x¢
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Quantile Function of EGU—G Family
The quantile function of EGU — G family is obtained by inverting the cdf of the EGU—G family as given in

(2.5). The quantile function of EGU —G is given by
-1

X=F" 1+{—%Iog{1—(l—u)i}}o =Q(u) (4.3)

1
The median of the EG-G family is given by Q(E]

1M

Y g Lioali (L)
Q(EJ_F 1+ Blogl(zj

The effects of the parameters of the EGU —G on the skewness S and kurtosis K can be examined using quantile
measures. Skewness and kurtosis are used to measure the degree of long tail and the degree of tail heaviness
respectively. Skewness and kurtosis are calculated respectively using the relationships of Galton (1983) and Moor
(1988). The Galton’s and Moors’s measures of skewness and kurtosis exist for distributions without moment and are
less sensitive to outliers. Using the quantile function in (4.3), the Galton’s skewness and Moors kurtosis of the
proposed family is given by

._Q%)-20(})+e(%)
o))

. 8)-2(%)+2(%)-o( %)
2(%)-2(%)

A 3-dimensional plot of the Galton’s skewness and Moors’ kurtosis against & and g for 0 =0.5, 4 =0 and

o, =1 of the EGUN distribution are presented in Figure 4. Figure 4 reveals that as & increases for (fixed 1) the

skewness and kurtosis decreases. Hence we can conclude that the parameter & has more effect on the skewness and
kurtosis than the parameter z .

Theorem: The quantile function of the T — X family defined in (2.4) is given by

exp(R’l (u))
1+ exp(R‘l(u)

Q_y (u)=F" ] el O<u<1
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Skewness

Kurtosis

Figure 4. Galton’s skewness (S) and Moore’s kurtosis (K) for EGUN ’s distribution. (O' =054 =0,0; =1).

Where F_l(.) is the quantile function of the random variable X with distribution function F (X;&)and R ()
is the quantile function of the random variable T with distribution function R (t) .

Proof: The proof of this theorem follows by equating (4) to U and solving for X accordingly.

Useful expansions

The following expansions are very useful in obtaining a linear representation for EGU — G family and derivation of
some of its important properties such as the order statistics and entropy.

o (k)
(1-2) =>(-1)’ i z! |z| <1 (4.4)
=0
o (N
exp(—z)zz( 1) 7!
o !
(4.5)

Linear Representation of EGU—G Density

Considering the expansions given in (4.4) and (4.5), (2.5), the cdf of EGu—G may be represented as

G(x)=1+ iqu(x,g)q (4.6)
q=0
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o w (_ )]+k+m+n+l S E m_h n
w=(2 3 S (4] o | "o | 1]
,m=0 n= J m n q

jok

In literature if F(X) is any arbitrary cdf of a random variable, then for @ >0 . G(X)zF(X)H and

g(x)=0f(x)F (X)H are the cdf and pdf of exponentiated-G distribution pioneered by Mudholkar and

Srivastava (1993). Thus some of the mathematical properties of the proposed distribution can be obtained using the
properties of the exponentiated-G family. Hence (4.5) can be written as

=1+ > wH, (&) 4.7)
q=0

Hq (X;&) isthe cdf of exponentiated G distribution. By differentiating (4.7), the EGU—G cdf reduces to

9 (X) = iwqﬂhqﬂ (X; ﬁ) (4.8)
q

=0
Where hq (X) is exponentiated-G density with power parameter ¢ . (4.8) shows that EGU —G can be expressed as
a linear combination of exponentiated-G densities. (4.7) and (4.8) are the major results of this section.

Moments

Let Y,,, be a random variable distributed as the baseline pdf with exponentiated-G distribution with power

parameter g+1and X , a random variable from EGU—G family. Using equation (4.8) the rth noncentral
moment of X can be derived using two formulae, firstly

( ) Z g+l ( q+1) (4.9)
Nadarajah and Kotz (2006) obtained moments of some exponentiated-G distribution. These moments can be very
useful in obtaining E ( X' ) .

Secondly, the moments of EGU—G can be obtained from (4.3) using the quantile function of the baseline
distribution as

E(X")= Z(CI+1) 2l (1,0) (4.10)
q=0
Cordeiro and Nadarajah (2011) derived | (r, q) for some distribution.

Where | ( I X'F(x;€)" x;é’;)dx:j'(Q(u))r u'du

4.4 Moment Generatmg Function
Given that M, (t) =E (etx ) be the mgf of a random variable X from EGU —G . The mgf of X firstly is given

by

M, (t)= qz_(;wqﬂM " (t) (4.11)
where l\/IYq+1 (t) is the mgf of Yq+l Thus M, (t) can be obtained from the exponentiated-G mgfs.

Secondly, the mgf of EGU—G can be obtained from the pdf of EGU—G as
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t)=> (q+1)w,,,1"(t,q) (4.12)
q=0

1

where 17(t,q) = j e"F(x;&)" f(x&)dx= Ie‘Q(“)uqdu
—o 0
The mgfs of members of EGU—G family can be derived using (4.11) and (4.12).

Entropy

The entropy of a random variable X with density function f (X) is the measure of the variation of the uncertainty.
A large entropy value indicates greater uncertainty in the data. The Renyi entropy of a random variable with density
function f (X) is given as

IR(y):ﬁlog{Ify(x)dx} (4.13)

For >0 and y =1
The Renyi entropy for the EGU—G family is obtained directly from (4.13) by replacing f (X) in (4.13) with
(2.6). Using the expansions (4.4) and (4.5), we obtained the Renyi entropy for the EGU—G as

B 1
()= 100 %+ 2 on{2nd (m k) @19

g ()

k! "
and
I(m,a,y,k):]c'fy(x;g) F(x8)" [ (ke7)- }dx
4.6 Order Statisti?:s

Order statistics has many applications in statistical theory and practice. Let X, X, --- X be a random sample from

EGu—G distribution family. Suppose that X;  denotes the ith order statistics. The pdf of the ith order
statistics can be expressed as

9in (X) =B(ign(—fi)+l)ni(—1)" (nj_iJG(x)”j_l

j=0

2 [ J jg(x)e(><)”"1, (4.15)

Gin (X) = JE03(| n—i+1)

where B(.,.) is a beta function. Using (2.6) and (2.5) and applying the useful expansions in Section 4.1. Let
Z=1i+ ]J+1, we have

s,

_ =0
gi;n(x)_ B(I n_|+1 Z r+1 (4-16)

=0
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where
k
d ~ ) i ii _1)p+q+t+ +m(z) a(p+l)—1
1=
" (r+1 q,t,k=0 p=0 m=r - p q

(e

and hr+1(X)=(I’ +1) f (X,g)F(X;%)(Hl) -1

Hence the ith order statistics of EGU —G can be expressed as the linear combination of exponentiated- G of the
baseline distribution. The mathematical properties of the order statistics can be obtained using the corresponding

properties of the exponentiated-G of the baseline distribution. This is the major result in this section.

Bivariate Extension
Let F (X, y;&) be the cdf of a bivariate baseline continuous distribution. We introduce the bivariate extension of

the proposed model. The joint cdf EGuU—G is given by

o

AN
11 exn) _p[ _F(X¥:8)
w (X, y)=1-|1—exp B[l—F(x,y;g)J (5.1)

The marginal cdf s are given by

- o

Gy (X)=1—| 1—exp B(L;a)ﬂ%

1-F(x&

o

G, (y)=1- :1_exp B (fLyé))J%

-F(v:g
where F1( é) and F, (y ?;) are the marginal cdf ’s of F(X Y; é) The joint pdf of X and Y can be
0°G ,
obtained easily by Jy y (X, y) = %
_ %
B F(x ;&) o [F(X, y:%)J & (F(K y:%)J
wy (X Y)=A(X, d Bl =—/———= 1- Bl =———=
) | ( y) ( y) o IE(X, y;&_,)_(%_l) exXp F(X’ y,é) o F(X’ y1§)

where |E(X, y;&) =1-F (X, y;&) and
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B _ B(a—1) F(x, y;é)f(%’“) OF (X, y;8) OF (X, y;8) F(x y;8) sl
A(x,y)=f(xy;&)— - F(x y'é)f(%fl) oy o {lexp{B(ﬁ(x, y;%)J

1 F(xy:§) 0\ |OF (% y58) OF (x,y;8)
F(Xyé)F(Xyé){ (F(Xyé)J (% 1)} 2y o

The marginal pdf ’s are given by

X_aBFl(xé) f(xé;) M—% g M%’ a1
T Ry ™ p{ i) Hl p{ (26 H

and
aB F, (y;&) 2(y &) o F(v;€) e Cexp) g (%) 2\
S R e p{ B(E(y:a)J Hl p{ B(E(y:&)] H

The conditional cdf ’s are

- 7}(/7 i
F(x VY;&
1_{1—exp{—5[lfgx,§//;§;j H
Gy (X y)=—7 ( L]
F(y;8) |77
1— 1—exp{—5[|fz()):;§g] }
1 el s[FOy) L]
1-|1 p<|[ B[.f(x,y;é)j H
Gy/x (/X)) =——=

- “
F(x.8)
1—(1— —B| =
The conditional pdf ’s are

exp ] [ E(x 9]
A Y)F (% y.8) VI E, (yv,8) P p][ B['E(X’y;‘:)J }

F(xy.8) o R (vie) o L (vig) { [Fz(y;a) e
o (E50)

gx/v (X/y) -
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N
exp _B[Wj
A(x,y)F (x, y;g)*(%“) E (x;g)f(%‘l) F(x ¥;8)

v, x (y/X) - = (Y51 et )
o) R R [l
N
F(x, ¥;8)
1—exp _B[If(xyg)j
N
Estimation

Here we obtain maximum likelihood estimates (MLEs) of the model parameters of the proposed family. Let
X;s Xy..oo. X, be observed samples from EGU—G distribution with parameters 4,0, and & .Letting

0= ( H, 0,0, &)T be the rx1 unknown parameter vector. The log likelihood function for the vector of parameters

is given by | =log [f{(g (% 6))}

n

I :nloga+n§—nlogo-+iznl“log f (X;é)—(§+ljiznlllog F(X;§)+( L 1} (1-F(x¢))

i=1

) =1

(6.1)

Q=

~F(xg))

The logliklihood function can be maximized directly by using Adequacy Model or fitdistrplus packages in R or by
differentiating (6.1) partially with respect to 4, o, and & and solving the resulting nonlinear equations.

Applications

Here, two real data sets are used to fit some special
models from the exponentiated Gumbel-G family;

Exponentiated Gumbel Lomax (EGUL) and

Exponentiated Gumbel Weibull (EGUW) . To
prove empirically the potentiality of these models,
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their fits are compared with fits of other competitive
models. In each case, the parameters in the model are
estimated using the Maximum likelihood method
(ML) using fitdistrplus package in R statistical
software.

The EGuUL is compared with Lomax (L) ,
Exponentiated  Lomax (EL) ,  Exponentiated
Generalized Lomax(EGL), Kumaraswamy Lomax
(KL) ., Exponentiated Kumaraswamy Lomax
(EKL) , and Beta Lomax(BL) , while EGUW is
compared with Weibull (W) , Exponentiated Weibull
(EW) ., Exponentiated Generalized Weibull
(EGW) ., Kumaraswamy Weibull (KW) ,

Exponentiated Kumaraswamy Weibull (EKW) and
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Beta Weibull (BW). The Anderson-Darling (A")

and Cramer-von Mises (W") statistics are used in the

comparison of EGUL and EGUW with other
models. These two statistics are widely used in the
comparison of non-nested models. In general, the
smaller the values of these statistics, the better the fit
of the distribution to the data.

Example 1
The first dataset corresponds to the breaking stress of
carbon fibers (in Gba) from Nichols and Padgett

(2006). We fitted EGUL and other competing
models to this dataset. The MLEs of the parameters
and their standard errors (in parentheses) are listed in
Table 1a while the values of the A" and W are
listed in Table 1b. Table 1b reveals EGUL has the

smallest values of A" and W~ among of the fitted

models. Hence the EGUL is the best among the
models fitted to the data. The histogram of the

dataset, estimated pdf and cdf are shown in
Figure 5.

Table 1a: MLEs of parameters (standard errors in parenthesis)

Distributions ]
Estimates
13.1787 7.63 8.45 18.17 3.91
EGUL(a,b, i) (s iomny (27.69) (8.77) 65.77) | (3.25)
407164649 | 10674210
L(a,b) (11863.28) | (29.75)
310430170 | 3079190 771
EL(a,b.0) (11894.45) | (25.40) (0.77)
44792.16 28153099 | 6.37 7.79
EGL(a,b.6,a) (23134.72) | (76.1010) (3.34) (1.50)
5.71 43.49 3.44 5651
KL(a,b.0,a) (23.39) (165.97) (0.75) (147.60)
3.14 6.00 9.42 13.24 0.51
EKL(a,b, 0,2, ) (2.26) (6.99) (13.24) (10.08) | (0.57)
6.13 6.78 2285.25 8817.24
BL(ab,a /) (0.91) (7.22) (1979.65) (696.58)
Table 1b: Cramer-von Mises (W *) and Anderson-Darling ( A") statistics
EGUL| L EL | EGL | KL EKL | BL
W- 0067 |3433 [0226 |0230 |0071 |0092 |0.154
A~ | 0389 | 17300 | 1218 |1227 |0414 | 0483 | 0783
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Example 2

The second dataset is on the exceedances of Wheaton Table 2a. Table 2b and Figure 6 shows that EGUW
river flood recently analyzed by Corderio et al provides the best fit when compared to other
(2018). We fitted EGUW and other competing competing models in this application.

models to the dataset. Estimates of parameters of
EGUW and their standard errors are shown in

Histogram and Estimated pdfs Estimated and Emperical cdfs

EGuUL
L

E-L
EG-L
K-L
EK-L
B-L

03 04 05
G(x)

0.2

0.0

Dataset Dataset

Figure 5. Plots of estimated pdf ’s andcdf ’s of EGUL with other competing models and empirical cdf

Table 2a: MLEs of parameters (standard errors in parenthesis)

Distributions Estimates

EGUW (a,b, . ,0) %6?375) Zé?s) ?é?%) ?6?(?4) (Zi.YA?S)
W(ab) 008 | (L60)

EW (a,b,0) %d?gz) %89312) ?6?312)

EGW (ab,0,2) %d?gz) ?4%?59) ?i.lézg) (()6?312)
KW(abba) |ooe oo |03 | @6

EKW (a,b,6,a, §) %d?c:)LO) ?6?(?0) %6?15?225) (()6.133) ?6%9)
BW(abaf) | asam | oaos) | o4
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Table 2b Cramer-von Mises (W ™) and Anderson-Darling ( A") statistics

EGUW | W EW | EGW | KW

w* | 0.037 0.168 | 0.125 | 0.125 0.116

A* | 0.246 0.945 | 0.752 | .752 0.691

EKW | BW
0.120 0.123
0.717 0.742

Conclusion

A new family of distribution called exponentiated
Gumbel-G is proposed and studied in this paper. The
EGuU —G has Gumbel —X proposed by Al-Agtash et
al. (2015) as a special case. The density of the
proposed family was expressed as a linear
combination of the exponentiated density of the
baseline pdf . The EGU—G family has the

capacity to generate distributions whose hazard rate

Histogram and Estimated pdfs

N
-
- W
o Il SO EW
8 _ EGW
_° —— KW
X —
% : EKW
<t \\ BW
O \
S
1l B
o |‘\\:‘ SN
o 1 [ —
o

0 10 20 30 40 50 60

Dataset

function is very flexible. We derived the quantile
function, moments, entropy, order statistics and the

bivariate extension of EGU—G family. The
estimation of the parameters of the proposed family
was done using the method of maximum likelihood.
Two datasets were used to illustrate the potentiality
and usefulness of the proposed family.

Estimated and Emperical cdfs

o
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Figure 6. Plots of estimated pdf ’s andcdf ’s of EGUW with other competing models and empirical cdf
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