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INTRODUCTION 

 

Rainfall is a meteorological phenomenon that has the 

greatest impact on human activities and the most 

important environmental factor limiting the 

development of the Nigeria regions (Ngatuame et al., 

2014).  Understanding rainfall variability is essential 

to optimally manage the scarce water resources that 

are under continuous stress due to the increasing 

water demands, increase in population, and the 
economic development.  There are many aspect of 

water resources management including the optimal 

water allocation, quality assessment and preservation 

, and prediction of future water demands to strategize 

water utilization, planning, and decision making.  

Rainfall is a stochastic process, whose upcoming 

events depends on some precursors from other 

parameters such as the sea surface temperature for 

monthly to seasonal time scales, the surface pressure 

for weekly to daily time scales, the surface pressure 

for weekly to daily to hourly time scales (Afolayan et 
al. (2016).  A lot of attention has been directed 

towards modeling and forecasting the amount of 

rainfall in various parts of Nigeria. The results from 

time series analysis derived from the study of rainfall 

in the past have proved inadequate, due to evidence 

in the occurrence of sudden natural disasters like very 

heavy rainstorms, floods and erosion.  These have 

taken a lot of people by surprise and claimed lots of 

lives and properties. Many researchers, such as 

Awolalu (2006) and Akpanta et al. (2015) have 

employed ARIMA and SARIMA respectively to 

model and forecast rainfall of Umudike, but they did 

not compare their models with other suitable models 
for forecasting rainfall data of Umudike, so as to 

select an appropriate model from the set of models.  

However, Offorha et al. (2018) have attempted to 

compare the forecasting abilities of Holt Winters 

Exponential Smoothing and SARIMA Models using 

four forecast error measures- Mean Error (ME),Mean 

Absolute Error(MAE), Mean Square Error (MSE) 

and Root Mean -Square Error (RMSE).  In all their 

works, they were considering only two models and 

using descriptive forecast errors for comparison.  

This paper therefore seeks to compare three different 
models- Triple Exponential Smoothing, SARIMA 

and Multiple Linear Regression Models to forecast 

the rainfall data of Umudike, and to apply Friedman 

iest statistic and the various descriptive measures to 

select an appropriate model from the competing 
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models.  Also, there works did not compare their 

models with other suitable models for forecasting 

rainfall data of Umudike. 

There have been numerous time series analysis 

studies on rainfall, most especially on the amount of 

rainfall.  In recent times, researchers are trying 

something new on rainfall. Dimgba (2000), in her 

work constructed a mathematical model for the 
rainfall data of Onne , which could be used to predict 

reliable and dependable future rainfall values. 

Specifically, it was intended to estimate and isolate 

the components of time series data namely, Trend, 

Seasonal variation, Cyclical variation and Irregular 

component present in the data using the descriptive 

time series approach. The study covered the period of 

1989-1997, while 1998 data was removed so that it 

can be compared with the predicted values. The data 

was collected from IITA Onne in River State. The 

results of the analysis showed amongst others that all 
the components of time series were present in the 

data. On the average, the rainfall of Onne within the 

period under consideration is 203.14mm with a 

standard deviation of 154.87mm.Based on the results 

of the analysis, it was suggested that a probability 

model be filled to the data in order to obtain a more 

sound result.  Also, observations of more than 20 

years should be analyzed so that the effect OC cycle 

will be greatly felt. Ezurike (1999),  did a time series 

analysis on the rainfall data of Umudike for the 

period of 10year. She found  that the periodic heavy 

rain occurred between May and October with 
maximum in August and September and a slight 

decline in July. She came up with the conclusion that 

rainfall data of Umudike from 1989-1998 had 

constant trend and exhibit seasonal pattern 

throughout the period of study. Delson (2004) , in his 

study, employed Multiple Regression model  to 

explain and predict mean annual rainfall in 

Zimbabwe. The historical annual mean rainfall data 

in Zimbabwe for the period 1974-2009 was collected 

from Zimbabwe Department of Meteorological 

services.  The mean annual rainfall values were 
calculated by averaging the monthly rainfall totals.  

In this work, dependent rainfall variable is expressed 

in terms of independent explanatory variable. The 

aim of the study is to develop a simple but reliable 

tool to predict annual rainfall for one year in advance 

using Darwin Sea level Pressure (Darwin SLP). Also, 

a weighted multiple regression approach is used to 

control for heteroscedasticity in the error terms.  The 

model developed has a reasonable fit at the 5% 

statistical level can easily be used to predict mean 

annual rainfall at least a year in advance.Folorunsho 

and Adesesan (2012), on their work, opined that 
weather forecasting is a vital application in 

Meteorology and has been one of the most common 

scientifically and technologically challenging 

problems around the world in the last century. They 

investigated the use of Data Mining techniques in 

forecasting maximum temperature, rainfall, 

evaporation and wind speed.  And they carried this 

out using Artificial Neural Network and Decision 

Tree Algorithms and Meteorological data collected 
between 2000 and 2009 from the city of Ibadan, 

Nigeria. A data model for the meteorological data 

was developed and this was used to train classifier 

algorithms. The performances of these algorithms 

were compared using standard performance metrics, 

and the algorithm which gave the best results used to 

generate classification rules for the mean weather 

variables. A predictive Neural Network model was 

also developed for the weather prediction.  Program 

and the results compared with actual weather data for 

the predicted periods. The results show that given 
enough case data, Data Mining techniques can be 

used for weather forecasting and climate change 

studies.  Akpanta et al. (2015) on their research 

considered the frequency of monthly rainfall from 

1996-2011 obtained from NRCRI Umudike in 

Nigeria. The analysis was based on probability time 

series modeling approach.  Emphasis would only be 

placed on the seasonal ARIMA (SARIMA) models. 

From the plots: Time series plot (Top Panel), ACF 

plot (Centre panel) and PACF plot (Bottom panel).  It 

could be seen that the time series plot displays a 

wave like pattern, an evidence of seasonality and no 
trend is observed which implies that the time series is 

stationary.  The sinusoidal or periodic pattern in the 

ACF plot is again suggesting that the series has a 

strong seasonal effect. The graph further displays 

evidence of seasonality and it was removed by 

seasonal differencing. The plots of the ACF and 

PACF show spikes at seasonal lags respectively.   It 

could be concluded that the frequency, not the 

amount of rainfall from 1996-2011 obtained from 

National Root Crop Research Institute (NRCRI) 

Umudike in Nigeria, is analyzed using probability 
time series modeling approach. Though the 

diagnostic check on the model favored the fitted 

model, the Auto regressive parameter was found to 

be statistically insignificant and this led to a reduced 

SARIMA (0, 0, 0) (0,1,1)12  model that best fit the 

data and was used to make forecast. Comparison of 

the actual/observed frequency from July to December 

2011 was done with their corresponding forecast 

values and a T- test of significance showed no 

significant difference. Offorha et al. (2018) on their 

work carried out a comparison of forecasting 

methods for frequency of Rainfall in Umuahia, Abia 
state, Nigeria.  Two different forecasting techniques, 
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Box Jenkins SARIMA and Holt-Winters Exponential 

Smoothing were adopted for the analysis.  The data 

used for the study were collected from the National 

Roots Crop Research Institute, Umudike (2007-2016) 

with a view to determining a better forecasting 

method.  This was achieved using four forecast errors 

statistics- Mean Error (ME), Mean Square Error 

(MSE), Mean Absolute Error (MAE) and Root 
Square Mean Error (RSME). SARIMA method has 

the minimum error values, a paired-sample t-test 

shows that there is no significant difference between 

the forecast values obtained from the two forecasting 

methods.  This therefore pre-supposes that the Holt-

Winters was equally a good forecasting method for 

the frequency of Rainfall in Nigeria. 

Murat et al.(2018) made use of ARIMA and 

Regression models to model the Meteorological time 

series of four European regions. They used the 

methods of the Box-Jenkins and Holt-Winters 
seasonal auto regressive integrated moving-average, 

the autoregressive integrated moving-average with 

external regres-sors in the form of Fourier terms and 

the time series regression, including trend and 

seasonality components methodology with R 

software. It was demonstrated that obtained models 

are able to capture the dynamics of the time series 

data and to produce sen-sible forecasts. However, 

they did not compare the models in order to isolate 

the most appropriate one for the series.  Related 

works are also carried out by Etuk et al. (2016), Iwok 

(2016), Attah and Bankole (2011), Uba and Bakari 

(2015), and many others. 

 

Methods of Analysis 

The data for this study  was collected from the 
Meteorological Department of the National Root 

Crop Research Institute (NRCRI), Umudike.  This 

data is a monthly data between the year (2008-2017), 

making it 10 years of monthly rainfall data. 

 

Triple Exponential Smoothing 

Triple exponential smoothing extends the double 

exponential smoothing to model time series with 

seasonality. The method is also known as the Holt-

Winters in recognition of the name of the inventors. 

Winters improved the Holt’s method by adding a 
third parameter to deal with seasonality. Thus, the 

method allows for smoothing time series when the 

level, trend and seasonality can vary. There are two 

main variations of the triple exponential model and 

they depend on the type of seasonality. If the 

seasonality is multiplicative (i.e. non-linear), then the 

three smoothing equations pertaining to level, trend 

and seasonality of p-period cycles are given by

: 

Lt= α(Xt/It−p) + (1 − α)(Lt−1 + Tt−1)                                              (1) 

Tt= γ (Lt-Lt−1) + (1 −γ )Tt−1                                                (2) 

It= δ(Xt/Lt) + (1 − δ)It−p) 

    

The forecast equation h-steps ahead at time t from the Holt-Winters with multiplicative seasonality is given by 

𝐹̂𝑡+ℎ= (𝐿𝑡+ h𝑇𝑡 )𝐼𝑡−𝑝+ℎ,  h= 1, 2, 3, . . .                                               (3) 

and its associated forecast error at time t is 

et+h = Xt+h − Ft+h = Xt+h − (Lt + hTt)It−p+h.                    (4) 

If the seasonality is additive (i.e. linear), the smoothing equations are given by 

𝐿𝑡= α(𝑋𝑡− 𝐼𝑡−12) + (1 − α)(𝐿𝑡−1+ 𝑇𝑡−1)                                              (5) 
      

𝑇𝑡 =γ (𝐿𝑡− 𝐿𝑡−1) + (1 −γ )𝑇𝑡−1                                               (6) 

𝐼𝑡= δ (𝑋𝑡− 𝐿𝑡) + (1 − δ)𝐼𝑡−𝑝                                   (7) 

 The forecast equation at time t from the Holt-Winters method with additive seasonality is given by 

𝐹̂𝑡+ℎ= (𝐿𝑡 + ℎ𝐻𝑡)𝐼𝑡−𝑝+ℎ , h= 1, 2, 3, . . .                                                                         (8) 

and its associated forecast error at time t is 

et+h = Xt+h − Fx+h = Xt+h − Lt − hTt − It−p+h.                                                                                                    (9) 

where, 

I𝑡= smoothed seasonal index at the end of the period.  
p=is the number of period in seasonal cycle,  

𝛼 = the smoothing constant   used for L𝑡 (level) 

𝛾=  the smoothing constant used to calculate the trend (T𝑡) 

δ = its smoothing constant such that  used for calculating the seasonal index 

h= horizon length of the forecasts of F𝑡+ℎ or number of forecast steps into the future 

T𝑡= Smoothed value of trend through period t 

L𝑡=smoothed value at the end of t after adjusting for seasonality. 

http://www.ijbst.com/
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X𝑡= Actual value for the period t. 

T𝑡−1= past trend at time t 

T𝑡+1= Forecast of the Time series for period 𝑡 + 1 

hT𝑡= number of forecast into the future of Trend 

I𝑡−𝑝+ℎ= smoothed seasonal index for period  𝑡 + 1. 

e𝑡+ℎ= error in period 𝑡 + 1. 
2.2 Multiple Linear Regression Model 

It is an extension of simple linear regression. It is used to explain the relationship between one continuous dependent 

variable and two or more independent variable.   

The Multiple Regression model as applied to time series data according to (De-lurgious, 1998) is given by 

Yt = a0 + b0t + 𝛼1X1t + α2X2t + ⋯ + α11X11t + et                                                           (10) 
Where, 

𝑌𝑡= The dependent variable,  

t = the time in months,  𝑋𝑖𝑡  are the dummy variables representing the months where the values occur ( i.e 1 if the 

value is in that month and 0 otherwise);  

𝛼𝑖are the dummy variable coefficients representing ith months (season) 

𝑒𝑡= random error term, 

𝑎0, 𝑏0= trend coefficients 

Notice here that the month of January is excluded to avoid a ‘dummy variable trap’. 
 

Seasonal ARIMA (SARIMA) Models  

Ekpenyong and Udoudo (2016) started that a time 

series is said to be seasonal of order d if there exists a 

tendency for the series to exhibit periodic behavior at 

regular or almost regular time interval d. The time 

series {𝑋𝑡__} is said to have a multiplicative (p, d, 

q)x(P, D, Q)s seasonal ARIMA model if: 

A(B)Φ(Bs)∆d∇D
sXt = B(B)Θ(Bs)εt                                                                                           (11)           

Where Φ 𝑎𝑛𝑑 Θ 𝑎𝑟𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝑃 𝑎𝑛𝑑 𝑄 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦.  𝑇ℎ𝑎𝑡 𝑖𝑠  
Φ(Bs) = 1 + ϕ1Bs + ⋯ + ϕpBsp                                                                                  (12) 

Θ(Bs) = 1 + θ1Bs + ⋯ + θpBsp                                                                                    (13) 

Where 𝜙𝑗 𝑎𝑛𝑑 𝜃𝑗 are constants such that the zeros of 

equation (12) and (13) are all outside the unit circle 

for stationarity and invertibility conditions 

respectively.  Equation (12)  and (13) represents the 

Autoregressive (AR) and Moving Average (MA) 

operators respectively.  Existence of a seasonal 

nature in a series is often evidentfrom the time plot. 

Moreover, for a seasonal series, the Autocorrelation 

Function (ACF) exhibits a spike at the seasonal lag. 

Seasonal differencing is necessary to remove the 

seasonal trend. If there exists a secular trend, then 
non-seasonal differencing is necessary. Etuk (2012) 

stated that to avoid undue model complexity, orders 

of differencing d and D should add up to at most 2 
(i.e d+D< 3). If the ACF of the 

differenced series has a positive spike at the seasonal 

lag, then a seasonal AR component is suggestive; but 

if it has a negative spike, then a seasonal MA term is 

suggestive. As it is already known, an AR (p) model 

has a Partial Autocorrelation function (PACF) that 

truncates at lag p and an MA (q) has an ACF that 

truncates at lag q. In practice,±2 ∕ √n, where nis the 
sample size, are the confidence limits for both 

functions. 

 

The Friedman Test 

The Friedman test is a non-parametric statistical test 

developed by Milton Friedman.  Similar to the 

parametric repeated measures ANOVA, it is used to 

detect differences in treatments across multiple test 

attempts.  The procedure involves ranking each row 

(or block) together, then considering the values of 

ranks by columns 

. 

Fr =
12

bk(k+1)
∑ R2

i − 3b(k + 1)k
i=1                                                                                                                             (14) 

where, k is the number of  models, b is the data size. 

The hypothesis here is that the models are not significantly different from one another against the alternative 

hypothesis that the models are significantly different from one another for at least one of the models. 
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The decision rule is that H0  is rejected if Fr> 𝜒𝛼
2, 𝑘 − 1, otherwise it is accepted. 

 

Results and Discussion 

 

R version 3.5.1 was explicitly used for all analyses in this study. All statistical tests conducted were done at 5% level 

of significance.  

 

 

Exploratory Data Analysis  

 
(A) 

 
(B) 

 
 

 

(C) 

 
Figure 1: Plot of the original Series (A), ACF (B) and 

PACF (C) of the frequency of monthly rainfall of 

Umudike, Umuahia from January 2008 to December 

2017.   

 

From the plot in figure 1 it could be seen that the 
time series Plot clearly indicates the presence of 

seasonality in the time series, and it also shows that 

there is no trend in the time series, since the time 

series does not seem to change (increase or decrease) 

over a reasonable period of time. We could equally 

observe from the same plot that the mean is constant 

hence no need for any mean correction and the series 

does not vary with time indicating that there is no 

need for data transformation.  The periodic pattern in 

figure 2 and 3 is again suggesting that the series has a 

strong seasonal effect.  The Augmented Dickey-
Fuller (ADF) was performed in order to verify the 

stationarity claim of the visual display with 

Hypothesis the rainfall data is not stationary  against 

the alternative hypothesis that the rainfall data is 

stationary. 

 

Table 1 

Test Test Statistic P-value 

Dickey-

Fuller 

-4.9922 0.01 

 

  From Table 1, it can be deduced that  P-value is less 

than 0.05 which is in favour of the alternative 
hypothesis. Thus, there is a strong evidence against 

the null hypothesis at 5% level of significance.  

In order to eliminate the seasonal effect from the time 

series, we subject the data to seasonal differencing 

and the data is re-examined visually. 

 

SARIMA MODEL 

SARIMA models are multiplicative combination of 

the trend and seasonal parts of the time series which 

is denoted as SARIMA, (p, d, q)(P, D, Q)s 

respectively. From the initial investigations in figure 
1, we found that the series shows a constant trend 

hence  d=0. Also, we found that the series shows a 

cyclic pattern indicating seasonality; hence we 

subject the series to first seasonal differencing with 

lag 12, so D = 1. Once the effect of seasons has been 

removed the next step is to determine the remaining 

parameters of the seasonal part, which are P and Q. 

http://www.ijbst.com/
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This was achieved using the ACF and PACF plots 

presented in Figure 2(A) and (B). 

 

 

 

 

Figure 2: ACF (A) and PACF (B) plots of the first 

seasonal differencing of the frequency of rainfall in 

Umudike, Umuahia, Abia State (Jan. 2008- Dec. 
2017). 

 

The optimal SARIMA Model obtained by using 

“auto.arima” in R-Software, with minimum AIC in 

SARIMA (2,0,0) (2,1,0)12 

 

Table 2: Parameter Estimates of the Model 

 

Coefficients SAR1 SAR2 

   

Estimates -0.5652 -0.3375 

Standard Error 0.1011 0.1057 

 
Table 3: Accuracy Measures 

ME RMSE MAE MSE 

-2.638199 70.94317 50.54664 0.7445393 

 

Model Validation  

It is ideal that after a model has been fitted on a time 

series data for diagnostics checks to be  

conducted to ascertain if the model fits the data 

adequately. These checks are carried out on the 

residuals. 
Diagnostic Checks On The Residuals 

 

(A) 
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(B) 

 
(C) 

(D) 

 
Figure 3: Adequacy checks of the fitted SARIMA (2, 

0, 0) (2,1,0)12 model using its residuals.  

From Figures 3 (C) and (D) used on checking the 

normality of the residuals, they clearly indicate that 

the residuals could be said to be from a normal 

distribution. but, Figure 3(B) of the residuals clearly 

shows that none except one of the spikes is 

significant as all are contained inside the confidence 
band. Hence, we conclude that the adjacent 

observations are not autocorrelated. Also, the residual 

plot (Figure 3 A) shows that the residuals fluctuate 

around zero, indicating that the residuals has a zero 

mean with a constant variance. 

3.2 Holt-Winters Triple Exponential Smoothing  

This Section shows the forecast results obtained from 

the Holt-Winters’ model. R- Statistical Software 

package is used in obtaining the parameters of the 

model and making forecasts based on the fitted 

model.  The parameters’ estimates are shown in 
Table 3. 

 

 

Table 4: Table Estimated Parameter for Holt-winters 

Triple Exponential Smoothing 
 

Smoothing 

Parameters 

Estimated value 

  

Alpha (𝛼) 0.018315638 

Gamma (𝛾) 0.018315638 

Sigma (𝛿) 68.6751 

 

From Table 4, α is very low and this shows that the 

level estimates are based on very recent observations 

in the series. The 𝛾   value shows that the trend is 

slightly updated but in a very minimal way. The 𝛿 

value depicts that the estimate of seasonal indices are 

based on observations from the distant past. 
 

Table 5: Accuracy Measures for Holt-Winter’s Triple 
Exponential 

ME RMSE MAE MSE 

-0.299845 64.54482 48.94898 0.7210063 

 

 Multiple Linear Regression 

 This Section shows the estimation results obtained 

from the Multiple Linear Regression. 
 

Table 6: Parameter Estimate For Multiple Linear 

Regression 

Coefficients Estimate  Std.Error t value Pr(>/t/) 

(intercept) 16.76465 23.14530 0.724 0.4704 

Trend -0.04363 0.17968 -0.243 0.8086 

Season 2 34.04885 29.71265 1.180 0.2408 

Season 3 78.98518 29.70905 2.598 0.0084    

*** 

Season 4 129.11612 29.70653 4.346 3.16e-

05 *** 

Season 5 292.01975    

29.70510 

9.831 < 2e-

16 *** 

Season 6 279.89339 29.70475 9.423 1.04e-

15 *** 
Season 7 266.40702 29.70549 8.968 1.10e-

14 *** 

Season 8 304.93066 29.70732 10.264 <2e-16    

*** 

Season 9 349.88429 29.71023 11.777 <2e-16    

*** 

Season 10 236.55792 29.7142 7.961 1.93e-

12 *** 

Season 11 43.27156 29.71932 1.456 0.1483   

Season 12 -1.46621 30.55814 -0.048 0.9618 

Signif.codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 

‘ ’ 1 
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Table 7: Accuracy Measures 

 

Models’ Comparison: Use of Accuracy Measures   

 

To compare the performance of the  fitting models 

from the three frameworks: SARIMA Model, Holt-

Winters and Multiple Linear Regression .we use four 

measures of error statistics, the Mean Error(ME), 
Mean Square Error (MSE), Root Mean Square Error 

(RMSE) and Mean Absolute Error (MAE)  for this 

comparison.   Table 8 is used to make comparison 

based on their accuracy measures.  

 

Table 8: Summary of the Accuracy Measures of the 

Models 

 

Accuracy 

Measures 

Forecasting Models 

 SARIMA Holt-

Winters 

Multiple 

Regression 

ME -2.638199 -0.299845 -9.765048e-
16 

MSE 0.7445393 0.7210063 0.3890477 

RMSE 70.94317 64.54482 64.19683 

MAE 50.54664 48.94898 48.47814 

 

 

From Table 8, it could be observed that the Multiple 

Linear Regression approach has lower error statistics 

when compared to Holt Winters and SARIMA 

Models.  Therefore, the Multiple Linear Regression 

Model is the most appropriate model for forecasting 

rainfall pattern of umudike among the three models.  

This is seconded by Holt-Winters Model. 
 

Use of Friedman Test Statistic to compare the 

ranks of the residual of the three models 

 

Table 9: Sum of Ranks of the absolute errors of 

individual models 

Model Sum of Ranks 

  

SARIMA 222 

HOLT-WINTERS 243.6 

MULTIPLE LINEAR 

REGRESSION 

254.4 

 

From Table 9, the Friedman test Statistic is given as 

Fr =
12

bk(k+1)
∑ R2

i − 3b(k + 1)k
i=1          

 

where b=120, k=3 

Fr =
12

(120)(3)(3 + 1)
 (2222 + 243.62 + 254.42)

− 3(120)(3 + 1) 

          = 4.536 
. 

The hypothesis here is that the models are not 

significantly different from one another against the 
alternative hypothesis that the models are 

significantly different from one another for at least 

one of the models. 
 

The decision rule is that H0   is rejected if Fr > 

𝜒𝛼
2, 𝑘 − 1, otherwise it is accepted. 

Hence, 𝜒0.05
2, 2 = 5.99 

 Since Fr = 4.536 < 𝜒𝛼
2, 𝑘 − 1 = 5.99.  Therefore, 

we do not reject H0 and hence we conclude that the 

models are not significantly different from one 

another at 𝛼 = 0.05. 
 

CONCLUSION 

In comparing the three models: SARIMA Model, 

Triple Exponential Smoothing and Multiple Linear 

Regression Approach, it was observed that the 

Multiple Linear Regression has much lower accuracy 

error measures and as such was considered the most 

appropriate model for forecasting rainfall pattern of 

Umudike. Further, in using the Friedman test statistic 

to test for the difference In performances of the 

models, we observed that the models were not 
significantly different from one another in terms of 

performance, unlike the use of accuracy measures. 

For future investigation the use of Friedman test is 

recommended, because it involves the use of 

statistical tool for inference, whereas the use of only 

Accuracy Measures of MSE, MAE, etc. does not 

require any statistical test.  In addition, models for 

Forecasting Rainfall or other Climatic factors should 

be compared for adequacy before use.  
 

 

REFERENCES 
 

Afolayan, A.H. , Ojokoh,B.A. and Falaki,S.O.(2016). 

Comparactive Analysis of Rainfall  Prediction 

models using Neural Network and Fuzzy Logic. Int. 

J.of Soft  Comp. and Engrg.,5(6), 4-7. 
 

Akpanta, A.C. , Okorie, I.E. and Okoye, N.N. (2015).  

SARIMA Modeling of the frequency of the monthly 
Rainfall in Umuahia, Abia State of Nigeria.  

American Journal of Mathematics and Statistics, 

5(2), 82-87. 
 

Awolalu, A.D.(2006).  Time Series Analysis on 

monthly rainfall in Umudike.  An Unpublished B.Sc. 

ME RMSE MAE MSE 

-2.810252e-

16 

 

64.19477 48.45201 0.388838 

http://www.ijbst.com/


 
International Journal of Basic Science and Technology                                                                            ISSN 2488-8648                                                                         

June  2019, Volume 5, Number 1, Pages  49 - 57                                                                                http://www.ijbst.com/   57 

 

                   

 

Project, Michael Okpara University of Agriculture 

Umudike, Umuahia.  Umuahia, Nigeria, pp56 
 

Attah, D.A. and Bankole, G.M.(2011): Time Series 
Analysis Model for Annual Rainfall data in Lower 

Kaduna Catchment, Kaduna, Nigeria. Global Journal 

of Researches in  Engineering, Civil and Structural 

Engineering, 11(6), 1-7. 
 

Dimgba, N.(2000).  Time Series Analysis of Onne 

Rainfall Data in Rivers State (1989-1997). An 

Unpublished B.Sc. Project, Michael Okpara 

University of Agriculture Umudike, Umuahia.  
Umuahia, Nigeria.  

 

Ekpeyong E.J and UdoUdo U.P (2016).  Forecasting 

Nigeria Inflation Rates by a Seasonal ARIMA 

Model.  Science Journal of Applied Mathematics and 

Statistics, 4(3),101-107. 
 

Etuk E.H,Uchendu .B,V. Edema U.A (2012). 

Forecasting Nigeria Inflation Rates by a Seasonal 

ARIMA Model.  Canadian Journal of Pure and 

Applied Science, 6(3), 2179-2185 
 

Etuk, E.H, Moffat, I. U. and Igbudu, R. C. (2016): A 

Re-modeling of Monthly Frequency of Rainfall in 

Umuahia, Nigeria, by a Box-Jenkins Approach, Asian 

Journal of Mathematicsand Computer Research, 

10(3), 262-270. 
 

Ezuruike,N.C.(1999).  Time Series Analysis of 

Umudike Rainfall Data.  An Unpublished B.Sc. 

Project, Michael Okpara University of Agriculture 

Umudike, Umuahia.  Umuahia, Nigeria.  
 

Folorunsho, O. and Nnabuchi, M.N. (2010).  

Analysis of some meteorological data for some 
selected cities in the Eastern and Southern zone of  

Nigeria.  African Journal of Environmental Science 

and Technology, 4(2), 92-99. 
 

Iwok, I.A. (2016): Seasonal Modeling of Fourier 

Series with Linear Trend. International Journal of 

Statistics and Probability, 5(6), 65-72.  
 

Nyatuame, M., Owusu-Gyimah, V. and Ampiaw, F. 

(2014). Statistical Analysis of Rainfall trendfor Volta 
Region in Ghana, ID 203245,11. 

 

Murat, M., Malinowska,I., Gos,M.  and  Krzyszczak, 

J. (2018): Forecasting daily Meteorological time 

series using ARIMA and Regression Models, 

International Agrophysics, 32, 253-264. 
 

Offorha B.C, Uche-Ikonne O.O,Akpanta A.C, 

Chikezie D.C and Okoye N.N (2018). Comparison of 

Forecasting methods for Frequency of Rainfall in 

Umuahia, Abia State Nigeria.  European Journal of 

Statistics and Probability, 6(1), 1-15.  
 

Uba, E.S and Bakari, H. R (2015): An Application of 

Time series Analysis in Modeling Monthly Rainfall 

Data for Maiduguri, North Eastern Nigeria. 
Mathematical Theory and Modeling, 5(11),  

24-33. 

 

 

http://www.ijbst.com/

