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Introduction 

 

Transformations aim at improving the statistical analysis 

of time series data, by finding a suitable scale for which a 

model belonging to a simple and well known class, e.g. 

the normal regression model has the best option. An 

important class of transformations suitable for time series 

measured on a ratio scale with strictly positive support is 

the power transformation; originally proposed by Tukey 
(1957), as a device for achieving a model with simple 

structure, normal errors and constant error variance, It 

was subsequently modified by Box and Cox (1964).  

Akpanta and Iwueze (2009) had also shown that 

Bartlett’s transformation is also a power transformation 

and as a result of its recent popularity of application 

particularly in this area of study we shall also adopt it in 

this study. Data transformations are not only important in 

time series analysis but in all areas of statistical modeling 

where there are some basic assumptions required for the 

applications of the conventional methods of analysis. For 
instance, in the words of Ruppert(1999), “data 

transformations such as replacing a variable by its 

logarithm or by its square-root are used to simplify the 

structure of the data so that they follow a convenient  

 

 

statistical model” .Ruppert (1999) went further to say that 

“Transformations have one or more objectives including; 

(i) inducing a simple systematic relationship between a  

response and predictor variables in regression. (ii) 

stabilizing a variance, that is inducing a constant variance 

in a group of populations or in the residuals after a 

regression analysis and (iii) inducing a particular type of 
distribution, e.g. normal or symmetric distribution. The 

second and third goals as suggested by Ruppert (1999) 

are concerned with simplifying the “error structure” or 

random component of the data, however he also stated 

that transformations should not be used blindly to 

linearize a systematic relationship since if the errors of 

the data set before a transformation are homoscedastic 

then it is likely to be heteroscedastic after transformation. 

Also, the logarithm transformation can induce skweness 

and transform the data nearest to zero to outliers. Ruppert 

(1999) then concluded that any intelligent use of 
transformations requires that the effects of the 

transformations on the error structure be understood. 

In situations where the assumptions required for 

parametric data analysis are violated, several options are 
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available (Sakia (1992): (i) Ignore the violation of the 

assumptions and proceed with the analysis as if all 
assumptions are satisfied. (ii) Decide what is the correct 

assumption in place of the one that is violated and use a 

valid procedure that takes into account the new 

assumption. (iii) Design a new model that has important 

aspects of the original model and satisfies all the 

assumptions, e.g. by applying a proper transformation to 

the data or filtering out some suspect data points which 

may be considered outlying. (iv) use a distribution-free 

procedure that is valid even if various assumptions are 

violated.  

For more details on these listed options, see Graybill 

(1976, p. 213). Most researchers, however, have opted 
for (iii) which has attracted much attention as 

documented by Thoeni (1967) and Hoyle (1973) among 

others. In this study our interest would center on 

transformation as a remedy for situations where the 

assumptions for parametric data analysis are violated. 

The Normal or Gaussian distribution is one of the most 

widely used of all random variables. Bell-shaped or 

approximately bell-shaped distributions are encountered 

in a large number of applications. Despite this utility, the 

fact that the values of a normally distributed random 

variable can in theory assume any value over the range 

  to   may lead to significant computational errors 

in situations in which the distribution’s outcomes are 

constrained. However, there are cases where this random 

variable is constrained to lie only on the negative or 

positive regions of the cartesian coordinates, which is 

often called the right or left truncation of the random 

variable. This restriction necessitated the derivation of 

distributions under the truncated environment.  

Consider a normally distributed random variable X with a 

probability density function specified as 

 
1

2

0

 
 
 

  

x - 1 2-
σ 21

f x = e , - < x < ,σ
σ 2π

                  (1) 

In many applications, the random variable X, which has a 

N(1, 2) distribution do not admit values less than or 
equal to zero. We must therefore disregard or truncate all 

values of X ≤ 0 to take care of the admissible region of X 

> 0 (Iwueze, 2007). Now if the values of X below or 

equal to zero cannot be observed due to censoring or 

truncation, then the resulting distribution is called the left 

truncated normal distribution with mean, 1 and constant 

variance, 2 <   and whose  Probability density 
function, f*(x) was obtained by Iwueze (2007) as 

  

 ,0

   
  

   
  

  
  
  

2

*

x-11
exp -

2 σ
f (x) =

1
σ 2π 1-Φ -

σ

x                                                      (2) 

                                        0,                  0x   

with 

  
  

  
  

2

-1

2σ
* σe

E X = 1 +
-1

2π 1 - Φ
σ

                                                 (3) 

and  
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 
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 .                                                                                 (4)    

 

Conventionally a time series, Xt, t  Z is thought to 
comprise three components namely; the trend-cycle 

component (Mt), the seasonal component (St) and the 

irregular or error component (et). In the traditional time 

series decomposition, the multiplicative model is 

specified as  

Xt =  Mt * St * et ,  et ~ N(1, 2) and 
s

t + j

j=1

S = s        (5) 

where s is the seasonal periodic cycle of the series. After 
the estimation of the components, there is need to assess 

model adequacy by checking whether the model 

assumptions are satisfied. The component of the time 

series used for this assessment is the irregular component 

or the residual series, te . The basic assumption is that 

te is a Gaussian  2

11,N  white noise. That is te ’s 

are uncorrelated random shocks with unit-mean  and 

constant variance, 
2

1  < ∞ . For any fitted time series 

model, the residuals which are the error component are 

the estimates of this unobserved white noise. To check 

whether the error are normally distributed, one can 

construct a histogram of the standardized residuals and 

compare it with the standard normal distribution using 
the chi-square goodness of fit test or any other test of 

normality such as Tukey, Kolmogorov-Smirnov and 

Andersen Darling tests of normality and so on. To check 

whether the variance is constant, we examine the residual 

plot or use the appropriate test of homogeneity of 

variance such as Bartlett or Levene’s test of homogeneity 

of variance. Finally, to check whether the residuals are 

white noise, we simply compute the sample 

autocorrelation and partial autocorrelation functions to 

check whether they do not form any pattern and are all 

statistically insignificant, within two standard deviations 

2

n

 
 
 

 at 5% level of significance, where n is the 

number of observations in the data set. 

Akpanta and Iwueze (2009) had shown how to apply 

Bartlett’s transformation technique to time series data 

using the Buys-Ballot table without considering the time 

series model structure (Iwueze et al., 2011). 

Akpanta and Iwueze (2009) showed that Bartlett’s 

transformation for time series data is to regress the 

natural logarithms of the group or periodic standard 

deviations  .
ˆ , 1,2,...,i i m   against the natural 

logarithms of the group or periodic means 

 . , 1, 2,...,iX i m and determine the slope,  of the 

relationship 

ˆl e i . e i .og σ =α+βlog X +error , i = 1, 2,…. m    (6) 

For non-seasonal data that require transformation, we 

split the observed time series , 1,2,...,tX t n  

chronologically into m fairly equal different parts and 

compute  . , 1, 2,...,iX i m  and  .
ˆ , 1,2,...,i i m   

for the parts. For seasonal data with the length of the 
periodic intervals, s, the Buys-Ballot table naturally 

partitions the observed data into m periods or rows for 

easy application. Akpanta and Iwueze (2009) also 

showed that Bartlett’s transformation may also be 

regarded as the power transformation 

  1

log , 1

, 1












e t

t

X

t
X

Y                    (7) 

Summary of transformations for various values of   and 

data admissibility are given in Table 1. 

There are various studies on the effects of transformation 

on the components of the multiplicative time series 

model in the statistical literature. The overall aim of such 

studies is to establish the conditions for successful 

transformations. A successful transformation except the 
logarithm transformation is achieved for the trend-cycle 

component when the original structure of the trend-cycle 

component remains unchanged after transformation. For 

example, in the same way that a linear trend-cycle 

component is expected to remain linear after 

transformation, a quadratic trend-cycle component should 

also remain quadratic after transformation. Furthermore, 

the seasonal indices of the transformed series are 



                                International Journal of Basic Science and Technology, Vol. 4 No 1 (2018) p.01-11 

 
expected to be obtained directly by applying the chosen 

transformation on the original seasonal indices. Similarly 
the error component that is initially assumed to be 

 1
2

N 1,σ  should also remain  2
N 1,σ

2
, even though 

2
σ

1
 may or may not be equal to

2
2

σ . 

Iwueze et al. (2008) exhaustively studied the effect of the 

six popular transformations on the seasonal component of 
the multiplicative time series model and obtained the 

conditions for successful transformation. Iwueze et al. 

(2008). Iwu et al. (2009) had exhaustively studied the 

effect of the six popular transformations namely; 

logarithm, inverse, inverse-square, square-root, inverse-

square-root and square on the trend-cycle components(for 

exponential, linear and quadratic cases) of the 

multiplicative time series model (5) and established the 

conditions for successful transformation .For more details 

see Iwu et al. (2009).  

The effect of logarithm (Iwueze (2007)), square-root 

(Otuonye et al., (2011), inverse (Nwosu et al.,2013) and 
square (Ohakwe et al.,2013) transformations on the error 

component of the multiplicative time series model had 

been carried out. Here a successful transformation is 

achieved when the desirable properties/assumptions 

placed on the error component remains unchanged after 

transformation. The basic assumptions of interest for this 

study are; (i) Normality (ii) Unit mean and (iii) constant 

variance (which may or may not be equal to initial 

variance before transformation. Consequently Iwueze 

(2007) investigated the effect of logarithmic 

transformation on the error component (et) of a 

multiplicative time series model where (  2~ 1,te N 

) and discovered that the logarithm transform; Y = Log et 

can be assumed to be normally distributed with mean, 

zero and the same variance, 2 for  < 0.1. Similarly 
Otuonye et al., (2011) and Nwosu et al., (2013) had 

studied the effects of  square root and inverse 

transformations on the error component of the 

multiplicative time series model. Otuonye et al., (2011) 

discovered that the square root transform; tY e  can 

be assumed to be normally distributed with unit mean for

0 0.59  , where σ is the standard deviation of the 

original error component before transformation. Nwosu 

et al. (2013) discovered that the inverse transform 

1

t

Y
e

  can be assumed to be normally distributed with 

mean, one and the same variance provided 0.1   . 

Furthermore the condition for square transformation was 

obtained by Ohakwe et al. (2013) to be for 0.027 

.There is no question that Otuonye et al. (2011) had 

studied the effect of square root transformation on the 

error component of the multiplicative time series model 

and obtained the interval for successful transformation to 

be 0 < σ 0.59 . However Otuonye et al. (2011) 

based their decision only on the computed values of 

E*(X) (mean of the left truncated N(1, 2) distribution) 
and E(Y) (mean of the square root transformed left 

truncated N(1, 2) distribution), where E*(X) =  E(Y)  = 
1.0. Secondly they encountered a sequence of infinite 

series in the derivations of the first and second moments 

and they simply used second order approximations of the 

series without any justification. Thirdly they failed to 

investigate the region or interval with regard to 1, where 
the bell-shaped characteristic (symmetrical curve about a 

unit mean) is satisfied for the square root transformed 

error component. It is on this note that we wish to 
appropriately reinvestigate the impact of square root 

transformation on the error component of the 

multiplicative time series model with the aim of finding 

the exact region of successful transformation. 

The subsequent part of this paper is organized as follows; 

Section two contains the derivations of the functional 

expressions for the first and second moments of the 

square root transformed error component, though these 

had been done by Otuonye et al. (2011), there were 

significant gaps in their derivations needed to be filled 

up. In section three the exact region for the successful 
application of square root transformation in a 

multiplicative time series model would be established 

while a numerical demonstration of the results obtained 

using a real-life data would be contained in section four. 

The conclusion and references would be respectively 

contained in sections five and six  

 

First and Second Moments of the Square Root 

Transformed Error Component 

As was earlier stated in section one, Otuonye et al. 

(2011) had obtained the first and second moments by 

simply adopting a second order approximation of an 
infinite series encountered while deriving these moments 

without justifying its adoption. As a result of the above 

shortcoming we wish to appropriately re-establish these 

moments in this section. 

Given that the pdf of the square root transformed error 

component had been obtained by Otuonye et al. (2011) 

which is specified as  

 


 


 
   

  
  
   

  

2
21 y 1

22y
f y e ,y 0

1
2 1

               (7) 

we therefore obtain the mean denoted as E(Y), the second 

crude moment denoted as E(Y2) and the variance denoted 

as Var(Y) as follows; 

we therefore obtain the mean denoted as E(Y), the second 

crude moment denoted as E(Y2) and the variance denoted 

as Var(Y) as follows; 
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   

2
21 y -1

-
2 σ2

0 0

2
E Y = yf y dy = y e dy

1
σ 2π 1- -

σ

 
   

 
 

  
  
  

                                       (8) 

Let 

 

2y -1 1
W = , - < u <

σ σ
                             (9) 

therefore, 

  
 






  



1

2
1

2

dW
y 1 W and dy

2 1 W

                             (10) 

Applying the substitution in (9) and its corresponding results given in (10) into (8), we obtain 

   
21 W

-
2 2

1
-
σ

1
E Y = 1+σW e dW

1
2π 1-Φ -

σ



  
  
  

                         (11) 

But from binomial theorem,  

  
    





      

2w
2 2 3 3 4 4 5 51 2

2
W w w 5 w 7 w e

W 1 1 . . .
2 8 16 128 256

                         (12) 

hence 

 



    






 
       

 


2w2 2 3 3 4 4 5 5

2

1

1 w w w 5 w 7 w
E Y 1 . . . e dw

k 2 8 16 128 256

   

                  (13) 

where 

 


  
    

  

1
k 2 1                             (14) 

 

In other to determine the appropriate interval for  , we 

first obtain the interval 0 b  where the theoretical 

mean of the left-truncated  2N 1,  distribution is 

approximately 1.0 to varying degrees of precision (that is 

the number of decimal places (dp)). To achieve this 

purpose we evaluate the expression for  *E X as 

obtained by Iwueze (2007) for values of

0.0001,0.0002,0.0003,...,0.5998,0.5999,0.6 
.A series of 6000 values were obtained but for illustrative 

purposes, an abridged table of the results is given in 

Table 3(Appendix 1) while the summary of the results 

subject to the degree of precision is given in Table 

2(Appendix 1). Also included in table 3 is the 

computations of variances of the left-truncated N(1, 2) 
and its square-root transform denoted as Var*(X) and 

Var(Y) respectively and the variance-ratio (Var*(X) / 

Var(Y). It is clear from table 3 that the variance-ratio is 

4.0 as already obtained by Otuonye et al. (2011). This 

simply means that the variance of the left-truncated N(1, 


2
) is four times that of the square-root transformed left-

truncated N(1, 2). 

The points  = 0.2561, 0.3019, 0.3822 and 0.5678 given 
in table 2(Appendix 1) are the critical values where the 

pdf curves of the transformed and the untransformed 

distributions would be investigated for bell-shaped 

characteristic of the normal curve. The outcome of this 

investigation would enable us to determine the degree of 

precision to adopt and thus the value of b. The curve 
shapes of the probability density functions of the left-

truncated  2N 1, 
 

and that of the square root 

transformed left-truncated  2N 1,  distributions for  

= 0.2561, 0.3019, 0.3822 and 0.5678 are given in figures 

1 and 2. The purpose of this investigation is to determine 
the point where there is an indication of departure from 

normality (non-symmetrical curve about a unit mean). 

Based on the plots given in figures 1 and 2, there is no 

question that there is a clear evidence of departure from 
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normality at   0.5678 ,also there is a slight 

deviation from normality at   0.3822  hence the 

interval of study in this paper  where both distributions 

are almost perfectly normally distributed is 

 0 0.3019 . 

Furthermore, the integrals of the higher terms of the 

series starting from the fourth term are evaluated at  = 
0.3019. Based on the integral results given in Appendix 

2, it is clear that these higher integrals contribute nothing 

to the value of the integral for the mean function and 
therefore the functional expression for the mean can be 

evaluated by ignoring them. Hence the mean function can 

be reasonably approximated using the second order, 

hence

 



 






 
   

 


2w2 2

2

1

1 w w
E Y 1 e dw

k 2 8
 

  

 
  

  

  

 
 

   
 
 
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2 2 2w w w2
22 2 2

1 1 1

1
e dw w e dw w e dw

k 2 8
           (15) 

For the first integral in (15), recall from Iwueze (2007) 

that  










 
   

 


2w

2

1

1 1
e dw 1

2
              (16) 

hence 











  
     

  


2w

2

1

1
e dw 2 1              (17) 

For the second integral 










 
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 
 
 



2w

2

1

w e dw
2

 in  (15), 

 let 


   2

2

1
w y, y               (18) 

then 


1

2w y                   (19) 

and 
dy

dw
2w

              (20) 

thus 



 

   


 
  



 
    

 
 

2 2

22

1

w y y 2

2 2 2

11 1

e
w e dw e dy 2e

2 4 4 2
          (21) 

Furthermore, using a similar result obtained by  

Iwueze (2007), it is easy to show that 

 




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










  
     
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

2 2

1

2w2 2
2 22

1 2

1

2 1 e
w e dw 1 Pr

8 16 8
      (22) 

Combining the results in (17), (21) and (22), we obtain 

   

2

1

2
2

1 2

5e 1
E Y 1 1 Pr

21 2
8 1

 






 
   

       
              

  (23) 

 

Derivation of the Variance of Y (Var (Y)) 

By definition 
 

       2 2Var Y E Y E Y      
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   
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  

  
   

  

 
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2
y e d y

k





     
                                          (24) 

 

 

The application of the substitution in (9) and its 

corresponding results in (10) into (24) yields 
 

   
2 22w w w

2 2 2 2
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1 1
E Y 1 w e d w e d w w e d w

k k
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  

  

  

 
 

    
 
 

  

      

           …..  (25) 
2

2

1w

22

1

w e d w e 



 
 



                                  (26) 

 

Thus, substituting the results in (17) and (26) into (25) 

yields 

 
2
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1
1 2

2 21 1 e
E Y 2 1 e 1

k 1
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


 
              
            

   

 

 

         ……… (27) 

hence 
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                                                           (28) 

 

Considering that the left truncated N(1, 2) distribution 
and its square root counterpart are both normally 

distributed at  = 0.3019 as evidenced in figures 1 and 2 
and that the means of both distributions are 

approximately 1.0 as also evidenced by the results of the 

computations of E(X) and E(Y) (the abridged table given 

in table 3 of Appendix 1), we can confidently  say that 

the interval for successful square root transformation 

when using a multiplicative time series model is 0 <  ≤ 

0.30. To further confirm the point  = 0.30, we tested for 

the normality of 
*

Y = X using the kolmogorov-

smirnov (KS) test at 5% level of significance (), where 

X* are data generated from the N(1, 2)  at  = 0.28, 0.29, 
0.3, 0.31, 0.32, 0.4. The results of the tests are presented 

in Table 4(Appendix 1). Based on the results, it is clear 

that normality of the generated data is rejected for  ≥ 
0.31. 

 

Application to Real-Life Data 

In this section we would use data on the number of 

children immunized against BCG in Abia state from 

2005-2009. The data is presented in Table 5:  

For the analysis of the data in table 5, we did the 
following: 

(i) justified the choice of the multiplicative 

model for data decomposition to obtain 

the residual series (error component  

) of the original data ) 

(ii) calculated the mean and variance of

) and tested for its normality 

using Anderson-Darling test of 

normality. 

(iii) justified the suitability of inverse-

square-root transformation of the 

original data  

(iv) applied square-root transformation on 

Xt  to obtain Yt  and decomposed Yt to 

obtain the residual series (error 

component ) 

(v) calculated the mean and standard 

deviation of   and also tested itfor 

normality using Anderson-Darling test. 

(vi) compared of   and   

The summary of the Descriptive Statistics of and 

resulting from the analysis is given in table 6. There is no 

question that the analysis clearly illustrates the effect of 

square root transformation on the error component of the 

multiplicative time series model in the sense that:  

the square root transformation normalized the error 

component, both means are approximately 1.0 to the 

nearest whole number, the ratio of variance of  to that 

of et
* is approximately 4.0 as was established in the 

course of this study and the interval for successful 

application of the square root transformation for a 

multiplicative time series model is 0 <  ≤ 0.30 
 

Conclusion 

In this study, we established the interval 0 <  ≤ 0.30 as 

the exact region for the successful application of square 
root transformation when using a multiplicative time 

series model. We also justified the use of second order 

approximation of the infinite series encountered in 

deriving the functional expressions for the first and 

second moments of the square root transformed left 

truncated normal (1, 2) distribution. Finally, the 
established results were validated using a real life data. 
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         *f x                                                               *f x , 0.2561          

           *f x , 0.3019   

               *f x , 0.3822   

            *f x , 0.5678   
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Figure 1: Curve Shapes of the Left-Truncated  2N 1,  
   

                     

       f y                                    f y , 0.2561          

                                     

 f y , 0.3019   

 

 f y , 0.3822   

 

 
   f y , 0.5678   

     

 

 

Figure 2: Curve Shapes of the Square root transformed Left-Truncated   2N 1,  
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Table 1: Bartlett’s Transformation for some values of  . 

S/N   Required Transformation Data admissibility 

1 0  No transformation 
tX     

2 1

2
 tX  tX 0

 

3 1 log e tX  tX 0
 

4 3

2
 

1

tX
 tX 0

 

5 2  1

tX
 t tX , X 0    

 

6 3  

2

1

tX
 t tX , X 0    

 

7 1  2

tX  tX   
 

 

Table 2: Summary of the results, where  *
E X = 1.0  subject to the required degree of 

Sn Degree of accuracy Maximum value of  

1 1 decimal place (dp) 0.5678 

2 2 decimal place (dp) 0.3822 

3 3 decimal place (dp) 0.3019 

4 4 decimal place (dp) 0.2561 

 

 

Table 3: An Abridged Table showing the Computations of  E*(X), E(Y), Var*(X), Var(Y) and the Variance Ratio 

 

 

*Var X

Var Y

 
  
 

for various values of  

 

S/n 
 
  

 

 *E X  

 

 E Y  

 

 *Var X  

 

 Var Y  
 

 

*Var X

Var Y
 

1 0.0001 1.0000 1.0000 0.0000000100 0.0000000025 4.0000 

2 0.0002 1.0000 1.0000 0.0000000400 0.0000000100 4.0000 

3 0.0003 1.0000 1.0000 0.0000000900 0.0000000225 4.0000 

4 0.0004 1.0000 1.0000 0.0000001600 0.0000000400 4.0000 

5 0.0005 1.0000 1.0000 0.0000002500 0.0000000625 4.0000 

6 0.0006 1.0000 1.0000 0.0000003600 0.0000000900 4.0000 

7 0.0007 1.0000 1.0000 0.0000004900 0.0000001225 4.0000 

8 0.0008 1.0000 1.0000 0.0000006400 0.0000001600 4.0000 

9 0.0009 1.0000 1.0000 0.0000008100 0.0000002025 4.0000 

10 0.0010 1.0000 1.0000 0.0000010000 0.0000002500 4.0000 

11 0.0011 1.0000 1.0000 0.0000012100 0.0000003025 4.0000 

12 0.0012 1.0000 1.0000 0.0000014400 0.0000003600 4.0000 

13 0.0013 1.0000 1.0000 0.0000016900 0.0000004225 4.0000 

14 0.0014 1.0000 1.0000 0.0000019600 0.0000004900 4.0000 

15 0.0015 1.0000 1.0000 0.0000022500 0.0000005625 4.0000 

16 0.0016 1.0000 1.0000 0.0000025600 0.0000006400 4.0000 

17 0.0017 1.0000 1.0000 0.0000028900 0.0000007225 4.0000 
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18 0.0018 1.0000 1.0000 0.0000032400 0.0000008100 4.0000 

19 0.0019 1.0000 1.0000 0.0000036100 0.0000009025 4.0000 

20 0.0020 1.0000 1.0000 0.0000040000 0.0000010000 4.0000 

21 0.0021 1.0000 1.0000 0.0000044100 0.0000011025 4.0000 

22 0.0022 1.0000 1.0000 0.0000048400 0.0000012100 4.0000 

23 0.0023 1.0000 1.0000 0.0000052900 0.0000013225 4.0000 

24 0.0024 1.0000 1.0000 0.0000057600 0.0000014400 4.0000 

25 0.0025 1.0000 1.0000 0.0000062500 0.0000015625 4.0000 

26 0.0026 1.0000 1.0000 0.0000067600 0.0000016900 4.0000 

27 0.0027 1.0000 1.0000 0.0000072900 0.0000018225 4.0000 

28 0.0028 1.0000 1.0000 0.0000078400 0.0000019600 4.0000 

29 0.0029 1.0000 1.0000 0.0000084100 0.0000021025 4.0000 

30 0.0030 1.0000 1.0000 0.0000090000 0.0000022500 4.0000 

31 0.0031 1.0000 1.0000 0.0000096100 0.0000024025 4.0000 

32 0.0032 1.0000 1.0000 0.0000102400 0.0000025600 4.0000 

33 0.0033 1.0000 1.0000 0.0000108900 0.0000027225 4.0000 

34 0.0034 1.0000 1.0000 0.0000115600 0.0000028900 4.0000 

35 0.0035 1.0000 1.0000 0.0000122500 0.0000030625 4.0000 

36 0.0036 1.0000 1.0000 0.0000129600 0.0000032400 4.0000 

 

Table 4: Summary of Kolmogorov-Smirnov Test of Normality for the transformed series for the specified values of σ) 

σ 
 

KS value Approx 
p-value 

 Decision 

0.28 0.028 P > 0.15 0.05 Accept normality 

0.29 0.042 P > 0.15 0.05 Accept normality 

0.30 0.039 P > 0.15 0.05 Accept normality 

0.31 0.089 0.01 0.05 Reject normality 

0.32 0.055 0.036 0.05 Reject normality 

0.40 0.067 0.01 0.05 Reject normality 

Note: X* is a data set of 300 values  

 

Table 5: Number of children immunized against BCG in Abia state from 2005-2009. 

 

Year 

Jan Feb March April May June July Aug Sept Oct Nov Dec 

2005 36 25 38 38 42 48 47 47 46 48 44 45 

 

2006 57 61 47 35 28 40 42 39 42 40 42 46 

 

2007 36 38 33 25 36 46 52 58 56 57 61 64 
 

2008 80 84 103 109 110 111 109 117 116 118 117 120 

2009 79 82 89 115 120 124 127 128 126 128 119 126 
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Table 6: Summary of the descriptive statistics of and  for the data on the Number of children immunized against 
BCG in Abia state from 2005-2009 
 

Error  

component 

Mean Variance 

(2) 

Standard 

Deviation () 

p-value 

 of KS test 

KS value Level 

of 

significance 

Decision Variance  

ratio 

 

0.9971 0.0599 0.2448 P < 0.01 0.135 0.05 Reject 
normality 

 
3.84 ≈ 4.0 

 

0.9992 0.0156 0.1249 0.063 0.112 0.05 Accept 

normality 

 

 

Appendix 2 

 

Given the integral 
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Similarly 

 

2w4 4
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3 22
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